A generalized framework for
medical image classification
and recognition

In this work, we study the performance of a two-stage ensemble
visual machine learning framework for classification of medical
images. In the first stage, models are built for subsets of features and
data, and in the second stage, models are combined. We demonstrate
the performance of this framework in four contexts: 1) The public
ImageCLEF (Cross Language Evaluation Forum) 2013 medical
modality recognition benchmark, 2) echocardiography view and
mode recognition, 3) dermatology disease recognition across two
datasets, and 4) a broad medical image dataset, merged from
multiple data sources into a collection of 158 categories covering
both general and specific medical concepts—including modalities,
body regions, views, and disease states. In the first context, the
presented system achieves state-of-art performance of 82.2%
multiclass accuracy. In the second context, the system attains 90.48%
multiclass accuracy. In the third, state-of-art performance of 90%
specificity and 90% sensitivity is obtained on a small standardized
dataset of 200 images using a leave-one-out strategy. For a larger
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dataset of 2,761 images, 95% specificity and 98% sensitivity is

obtained on a 20% held-out test set. Finally, in the fourth context,
the system achieves sensitivity and specificity of 94.7% and 98.4%,
respectively, demonstrating the ability to generalize over domains.

Introduction

Medical image data has been growing by 20% to 40%
every year [1], whereas the number of physicians per capita
in the United States has remained relatively flat since the
1990s [2]. This trend makes automatic classification and
categorization of medical images important so that clinicians
are better able to handle the increasing workload demands
placed on them. The primary challenge for medical image
recognition is its broad domain. Medical images vary by type
[e.g., illustration, radiological, electrocardiogram (ECG),

or dermatological photograph], modality [e.g., x-ray,
magnetic resonance imaging (MRI), ultrasound, or
dermoscopy], body region [e.g., brain, heart, chest, or arms],
view [e.g., anterior-posterior or superior-inferior], and
disease [e.g., infarct, melanoma, or healthy], giving rise to
potentially millions of categories. In order for a modeling
system to cover such a diverse range of categories, it must be
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arbitrarily scalable along three orthogonal dimensions: the
number of categories the system can model, the amount of
data the system can handle (in terms of images), and number
of algorithmic approaches the system can utilize. The third
dimension is especially important, as no one approach

can perform well across all domains in this problem space:
an effective system must involve a number of approaches,
each of which can be selected based on which best
recognizes or models a given category.

In order for research and development to take place in
the space of medical image retrieval, datasets must be
constructed from which experiments can be performed.
Such datasets must contain both image data, as well
as labeling structures that are expressive enough to
comprehensively capture the diagnostic and categorical
information contained within. In addition, these datasets
must be large enough to adequately cover the visual variety
of the various domains they represent. Some recent public
datasets that seek to address these requirements have been
Image Retrieval in Medical Applications (IRMA) [3] and the
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ImageCLEF (Cross Language Evaluation Forum) Medical
Task [4].

IRMA is a comprehensive hierarchical coding structure
covering medical image modality, body region, and view.
This data structure has been initially populated with
data limited to projection radiography (x-ray). Several
approaches have been implemented and tested with
respect to the dataset. One of the more effective
methods has involved the use of classifiers trained from
Bags-of-Visual-Word histogram features aggregated over
images patches [S]. Other recent work with this dataset,
including SPIRS-IRMA [6, 7] (Spine Pathology and
Image Retrieval System—Image Retrieval in Medical
Applications), has attempted to fuse image level modeling
approaches with more localized and specialized methods,
such as segmentation approaches, that are capable of
quantifying more subtle disease states. While these methods,
which are based on common techniques in computer vision
and multimedia, have performed well on this initial data
population of IRMA, it is unclear from the published
experiments how they would scale, in terms of recognition
performance, to other domains within medicine.

The ImageCLEF Medical Task is another well-known
medical imaging benchmark that has established various
challenges over time. The IRMA dataset was featured in this
task over a number of years (2005 to 2009). More recently,
ImageCLEF has begun to focus predominantly on medical
image modality recognition, using a subset of data from a large
corpus of PubMed* articles. The image data covers a larger
breadth of modalities than IRMA, which was limited to
projection x-ray imaging; however, the hierarchy is shallow,
not discriminating between body regions, views, or diseased
states. A number of algorithmic approaches were evaluated
with respect to this dataset, with the best ones achieving in the
range of 75% to 80% multiclass accuracy [4, 8].

Other studies have also been spawned in more specialized
areas of medical image retrieval and analysis. These
include echocardiography view recognition [9, 10] and
dermatology image recognition of melanoma.

The determination of echocardiography view and mode
is an essential step in automatic cardiac echo image analysis.
In an echocardiogram exam, the position and angulation of a
2D ultrasound probe changes the views, and consequently
may change the most appropriate analytic algorithm to be
applied. Many recent studies have been performed in this
area. Ebadollahi et al. [11] proposed a chamber detector
based on a generic cardiac chamber template. They used a
Markov Random Field (MRF) to locate the chambers and
a multi-class Support Vector Machine (SVM) classifier to
predict the chamber view. In this approach, the end-diastolic
(ED) frame, where the heart is most dilated, is a key clue
for identifying the structure and location of chambers.

Zhou et al. [12] introduced a similar approach by using
ED keyframes and boosted weak classifiers of Haar-like local
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rectangle features for identifying heart structure and view
classification. Otey et al. [13] implemented a hierarchical
classification model to identify view type in the upper level,
and then view classification in the lower level. They fed
well-recognized low-level features, such as gradient, peak,
raw pixels, and other statistical features, extracted from
images to a Logistic Decision Tree at both levels. Park et al.
[14] extended the work by using an MLBoost learning
algorithm. Beymer et al. [9, 15] proposed incorporating
motion information, by using Active Shape Models (ASMs),
for view classification, extracting the shape and texture
information, and then tracking these across different frames
to derive motion information. Kumar et al. [16] extended
this approach by using vocabulary-based PMK (Pyramid
Match Kernel) and multiclass. Gonzalez et al. [17] used

a multilayer neural network for view prediction. In recent
work, Wu et al. [18] built SVM classifiers trained on
extracted Gist low-level features, as Gist provides a global
description of the image. Agarwal et al. [19] proposed using
SVMs modeled over Histogram of Oriented Gradients
(HOG) as a low-level feature. HOG extracts structural
information using a set of local histograms.

In dermatology, image analysis is an important problem,
as skin cancer is the most common form of cancer in the
United States [20]. Every year, over 3.5 million incidences are
reported in 2 million people. Every 57 minutes, one person
dies of melanoma. Survival rate is 98% with early detection,
and 62% when disease reaches lymphatics. Diagnosis of
disease is still a very subjective process, varying within
clinicians, across clinicians, and between institutions. Quality
of care can quickly degrade with lack of experience. Even
when expertise is available, accuracy of dermatology experts
is estimated between 75% and 84% [21], which leads both to
missed diagnoses as well as to unnecessary and potentially
disfiguring biopsies. As a result, a multitude of recent work
has strived to develop objective image analysis software to aid
in the diagnosis of melanoma.

One such work by Barata et al. [22] has endeavored to
explore a subset of modeling algorithms toward melanoma
detection. In this work, Barata et al. break down the approach
into segmentation, feature extraction, and modeling. Within
each, learning parameters are varied, and the impacts on
performance are assessed over a dataset of 176 images
(25 melanomas and 151 nevi). In the segmentation phase,
two types are attempted: a whole-lesion segmentation and
an interior-lesion segmentation with a border segmentation.
The latter mimics the commonly used pyramid or other
multi-granularity approaches of the computer vision
field—features are extracted from each region independently,
and concatenated via early feature fusion. In the feature
extraction phase, two relatively simple features are utilized:
edge and color histograms. These are either extracted at a
global scale, or locally pooled into a histogram using the
common bag-of-visual-words approach. In the modeling
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Figure 1

Overview of the IMARS training visual pipeline. Training data is partitioned into Learning and Validation sets. Unit Models are trained on the Learning

partition. Fusion of unit models is optimized on the Validation partition.

phase, three variants were studied: kNN (k-Nearest
Neighbors), SVM, and AdaBoost. For each, parameters

are also varied to optimize the technique. In general, color
histograms were found to outperform edge histograms, local
pooling was found to improve over global methods, and
multi-region segmentation was found to improve over single
region. Top performance measures were in the realm of 96%
and 80% for sensitivity and specificity. While the achieved
performance in this work is quite high, the results are
measured using a leave-one-out procedure on a very

limited dataset of under 200 images; therefore, whether

the conclusions of the work generalize to larger datasets
remain unknown.

Garnavi et al. [23] developed a computer-aided diagnostic
system for melanoma; the segmentation method [24]
involved a hybrid of global thresholding to detect an initial
boundary of the lesion, and then application of an adaptive
histogram thresholding on optimized color channels of X
(from the CIE XYZ color space) to refine the border. The
system applied a combination of texture and border-based
features, and utilized Gain Ratio to identify optimal features
to be used in the classification of melanoma lesions. This
approach achieved a significant reduction in the dimension
of the feature space (by a factor of 1,542), while increasing
the accuracy by 12% and decreasing the computational
time by a factor of 50. Applying a random forest classifier
on a set of 289 dermoscopy images (114 malignant,

175 benign) partitioned into train, validation, and test
image sets, the system achieved an accuracy of 91.26%
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and an area-under-curve value of 0.937, using 23 optimal
features. Experiments demonstrated higher contribution
of texture features than border-based features in the
optimized feature set.

Commercial products for melanoma recognition have
also been developed and subjected to U.S. Food and
Drug Administration (FDA) clinical trial. One such product
is MelaFind*, which has been studied on a dataset of
1,632 images (175 melanoma), which achieved high
sensitivity (98.3%) but low specificity (10.8%), making
it difficult to adopt in practice [25].

In this work, we present a visual modeling architecture
that is sufficiently flexible and scalable to cover a wide
spectrum of domains in classification of medical images.

In “Visual modeling approach,” we describe the algorithms
and implementation, which is based on a two-stage ensemble
approach that is implemented in the Hadoop* Map-Reduce
parallelization framework for arbitrary scalability. In
“Datasets,” we describe the datasets in which we evaluate
our architecture, covering the following four medical
imaging domains: 1) the ImageCLEF2013 medical image
modality classification benchmark, a space in which our
algorithm is directly comparable to other algorithms designed
for this task, 2) a specialized task of echocardiography view
and mode recognition, 3) a specialized task of melanoma
recognition in two datasets, including the previously
mentioned dataset [22], as well as a more recent dataset of
over 2,000 images, and 4) a broad medical image category
recognition dataset, where we merged multiple datasets into
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a collection of 158 categories covering both general and
specific medical concepts including modalities, body regions,
views, and disease states. In the section “Experimental
results,” we describe our experiments and results for each
of these datasets, and the paper ends with a conclusion.

Visual modeling approach

We study the efficacy of a variant of an ensemble modeling
approach [26, 27]. Specifically, we implement several
improvements to the IMARS visual learning framework
[28, 29]. IMARS is a two-stage ensemble learning pipeline,
whereby training data is partitioned into a “Learning” and
“Validation” partition (Figure 1). A variety of low-level
features are extracted (and normalized) over the training data,
including color histogram, edge histogram, Gist, color
correlogram, and LBPs (Local Binary Patterns), among other
global and local descriptors [30-35]. Some of the features
used have been reported in prior literature related to medical
image modality classification [3]. Each feature is extracted
over a variety of spatial granularities, such as global (entire
image), horizontal parts (three equally sized horizontal
segments), and layout (four quarters, and the image center).
Then, for each category, unit models are trained on subsets
of data and single feature types from the Learning partition.
These subsets are referred to as “bags.” For each unit
model training task, the system may use a variety of machine
learning algorithms and parameters, specified by the user, and
optimize the selection based on cross-fold validation. Once
unit models are trained, they are then input to a forward model
selection learning process on the Validation set. Forward
model selection will automatically determine an optimal
ensemble of unit models (data and features), relieving the user
of any guess-work into what features should be used for
modeling. This is done by first initiating the ensemble model
with the single unit model that achieves best performance
on the Validation dataset. Subsequently, a search is performed
to find the unit model that, when combined with the existing
ensemble, boosts performance the most. This process is
continued until performance saturates.

For large-scale training and scoring, we used the Hadoop
Map-Reduce implementation of IMARS for large-scale
ensemble classifier learning [28, 29]. In this method, unit
models are learned in the Hadoop Map stage, where each
task is independent, and ensembles are optimized in
the Hadoop Reduce stage, where independent tasks are
aggregated. Classifier scoring happens in a likewise fashion:
unit models are scored against image features in a Map stage,
and ensembles of unit model outputs are aggregated in the
Reduce stage. A physical cluster of approximately 800 CPU
cores (~700 used for data processing and ~100 reserved
for OS tasks), 3.1 TB of total system memory, and 70 TB
of hard disk storage is used for experiments.

For the purposes of this work, several improvements to
the IMARS visual learning pipeline have been implemented.
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Table 1 Categories of the ImageCLEF 2013
benchmark.

Acronym  Category

COMP Compound or multipane images (one category)
D3DR 3D reconstructions (one category)

DMEL Electron microscopy

DMFL Fluorescence microscopy

DMLI Light microscopy

DMTR Transmission microscopy
DRAN Angiography
DRCO Combined modalities in one image

DRCT Computerized tomography
DRMR Magnetic resonance
DRPE PET

DRUS Ultrasound

DRXR X-ray

DSEC Electrocardiography
DSEE Electroencephalography
DSEM Electromyography
DVDM Dermatology

DVEN Endoscopy

DVOR Other organs

GCHE Chemical structure
GFIG Statistical figures
GFLO Flowcharts

GGEL Chromatography
GGEN Gene sequence

GHDR Hand-drawn sketches
GMAT Mathematics

GNCP Non-clinical photos

GPLI Program listing
GSCR Screenshots
GSYS System overviews

GTAB Tables and forms

These include low-level features, modeling algorithms,
score normalization, and synthetic minority oversampling
techniques.

The first group of enhancements involves additional
sets of spatial granularities in which features are extracted.
These include “pyramid” and “pyramid23.” “Pyramid”
granularity is a spatial pyramid with global scope as the
first level (1 x 1 image grid), followed by a 2 x 2 image grid
as the second level (which increases feature dimensionality
by a factor of 5). “Pyramid23” uses global (1 x 1) as
first level, 2 x 2 image grid as second level, and 3 x 3 as
the third level (which increases feature dimensionality by a
factor of 14).

The second group of enhancements involves additional
implemented visual features. In addition to those previously
involved in the IMARS framework, we add variations of
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PW-doppler

Color doppler

CW-doppler

Examples of echocardiography view and mode. Two-dimensional (2D) mode two- to four-chamber views depict varying numbers of cardiac anatomical
chambers. The five-chamber view includes visualization of the aortic outflow tract. M-mode refers to “Motion Mode,” where movement of anatomical
surfaces is visualized. Continuous wave Doppler (CW-Doppler) samples a line through the body, whereas pulsed wave localizes sampling within a small

volume. Color Doppler overlays Doppler information on a 2D mode image.

Multiscale and Multi-Color Channel LBPs and Spatially
Invariant Feature Transforms (SIFT), as well as Fourier
Polar Pyramids. Color LBP [30, 31] is an extension
of the common grayscale LBP, whereby LBP descriptors
are extracted across five color channels (Red, Green, Blue,
Saturation, and Hue), with one histogram per color channel.
For a 59-bin (58 uniform and 1 non-uniform) LBP histogram,
this results in 59 x 4 = 236 total bins. A full 256 bin
variant is also extracted. Multiscale LBP (which can
be implemented in conjunction with Multi-color) is
implemented by extracting LBP descriptors over various
image sizes, and aggregating the descriptors into the
same histogram bins, weighted by the inverse of the
image size.

SIFT constitutes descriptors extracted around Harris
Laplace interest points. Each keypoint is described with
a 128-dimensional vector containing oriented gradients.
We obtain a visual word dictionary of size 1,000 by running
K-means clustering on a random sample of approximately
300,000 interest point features from the ImageCLEF 2013
PubMed image corpus. We then represent each image with a
histogram of visual words. We extracted two codebooks,
starting from two different random samples of points.
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We used soft assignment following Van Gemert et al. [34]
using o = 90. This descriptor was extracted using the
executable publicly available from the University of
Amsterdam [33] and from the VLFeat library [35]. We
also extracted variations of the SIFT descriptor in different
color spaces, namely RGB (red, green, blue), HSV (hue,
saturation, value), and opponent channels.

The Fourier polar pyramid is similar to the curvelet feature,
whereby each element of the feature vector represents
the average of some region of Fourier-Mellin space. However,
the regions are partitioned into a pyramid structure,
introducing various degrees of scale and rotation invariance.

The third group of improvements applies to modeling in
cases of data scarcity (opposite of large-scale conditions).
Specifically, we implemented a variant of the IMARS system
that can retrain unit models on the full 100% of training data,
if no data subsampling was earlier employed for training of
unit models. This helps boost the performance and ability
of the unit models to generalize, while still supporting feature
selection and ensemble model optimization. In cases of
extreme data scarcity, ensembles of late fusion may be
replaced with a single unit model trained over an early
fusion of features.
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Examples from the PH2 dermoscopy dataset. “Melanoma” represents malignant disease lesions. Atypical nevi are lesions of suspicion, but non-
malignant at time of imaging. Common nevi are benign lesions. Note the high degree of visual similarity between the classes.

In addition, the Synthetic Minority Oversampling
Technique (SMOTE) has been implemented, which creates
additional synthetic minority class training instances by
taking linear combinations of data samples in feature space
with their k-nearest neighbors.

The fourth and final improvement made to the system
is the way model scores are mapped. Instead of the
typical —infinity to +infinity of the SVM, we map scores
to a logistic function that has been fit to the probabilities
that a classifier score yields an instance of the positive
class on a balanced dataset (computed during unit model
cross-validation) [36].

Datasets

We demonstrate the performance of our visual analytics
system in a collection of four medical imaging domains.

All datasets were provided in de-identified form, intended
for research purposes, according to HIPAA (Health Insurance
Portability and Accountability Act) guidelines. In the first
domain, we use a public medical image modality benchmark
dataset. In the second domain, we utilize a collection of
echocardiography video sequences of 340 patients, which
involves 3 modes and 7 views (see “Echocardiography view
and mode dataset”). In the third domain, we used two datasets
of dermatology dermoscopy images that exhibit diseased
states of melanoma and benign non-melanoma lesions. In
the fourth domain, we aggregated multiple available datasets
to create a collection of 158 categories covering various
modalities, body regions, views, and disease states.

Standardized public ImageCLEF 2013 medical
modality dataset

We utilized the ImageCLEF 2013 Modality Classification
dataset [4], which contains 31 categories and is partitioned
into fixed training and test datasets. The categories cover
a wide variety of diagnostic medical images found in
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Table 2 Top 25 low-level features and resultant mean
average precision (MAP) on ImageCLEF 2013 validation
data partition.

MAP Feature Granularity
0.56492  SEMANTIC MODEL VECTOR Mixed
0.5164 RGB-sift-VLFEAT-code2 Pyramid
0.50532  RGB-sift-VLFEAT-codel Pyramid
0.50307  sift-VLFEAT-code2 Pyramid
0.50234  hsv-sift-VLFEAT-codel Pyramid
0.49658  sift-VLFEAT-codel Pyramid
0.481 hsv-sift-VLFEAT-code2 Pyramid
0.46803  LBP512-RGBH-59 Pyramid
0.44454  opponent-sift-AM-code2 Pyramid
0.44022  opponent-sift-AM-codel Pyramid
0.43438  csiftAM-codel Pyramid
0.4329 LBP512-RGBH-256 Pyramid
0.42609  csift-AM-code2 Pyramid
0.42309  siftAM-code2 Pyramid
0.42021  siftAM-codel Pyramid
0.41924  LBP512-RGBH-256 Global
0.41422  lbp_histogram Pyramid3
0.40978  mslbpgray59 Pyramid23
0.40541 rgbsiftAM_code2 Pyramid
0.39448  rgbsiftAM_codel Pyramid
0.3889 hsvsiftAM_code2 Pyramid
0.38873  LBP320_gray Pyramid
0.38148  mslbpcolorhue59 Global
0.37787  LBP320_gray Grid7
0.3774 LBP320_gray Grid7

PubMed journal articles, across domains such as radiography
(x-ray, computed tomography, magnetic resonance
imaging, positron emission tomography, etc.), pathology
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Table 3 Experimental results for echocardiography view and mode detection.

Label Accuracy Average precision Sensitivity Specificity
Two-chamber 0.939 0.608 0.739 0.96
Three-chamber 0911 0.696 0.768 0.94
Four-chamber 0.785 0.643 0.775 0.79
Five-chamber 0.849 0.017 0.168 0.90
CW-Doppler 0.999 0.955 1.00 1.00
PW-Doppler 0.997 0.847 1.00 1.00
Color Doppler 0.758 0.709 0.96 0.04
M-mode 1.00 1.00 1.00 1.00

(slide microscopy and electron microscopy), laboratory
tests (chromatography gels), electrical signals
(electrocardiograms), and visible light (endoscopy and
dermoscopy). For the full accounting of categories, see
Table 1. The training dataset contains 2,845 images, and
the test set contains 2,582 images. Benchmark performance
is measured by multiclass accuracy.

Echocardiography view and mode dataset

Our echo dataset consists of 340 patients and

2,158 echocardiographic sequences depicting a variety of
cardiac diseases in patients including aneurysms (89), dilated
cardiomyopathy (76), hypertrophies (78), and normal LV (left
ventricle) size and function (448). Image frames have been
extracted from video sequences, with the dataset involving
a combination of mode and views: M-mode (MMOD),

2D or B-mode [which consists of four views of two-chamber
(2CH), three-chamber (3CH), four-chamber (4CH), and
five-chamber (SCH)], and Doppler echocardiography, which
includes continuous wave (CW) Doppler (CWD), pulsed
wave (PW) Doppler (PWD), and color flow Doppler (CFD).
Therefore, we have eight categories/classes with total number
of 83,381 images with very diverse distributions; M-mode
(48), two chamber (7,524), three chamber (13,168), four
chamber (27,954), five chamber (5,474), CW-Doppler (254),
PW-Doppler (124), and color Doppler (28,835). Figure 2
shows visual examples of these categories.

Dermoscopy disease datasets

For our experiments in dermoscopy melanoma recognition,
we have utilized two datasets, summarized in the following
subsections.

Pedro Hispano Hospital dataset

The first is the Pedro Hispano Hospital (PH2) dataset,
containing a total of 200 images (40 instances of melanoma,
and 160 instances of non-melanoma, including 79 atypical
nevi). Figure 3 shows example images from this dataset,
emphasizing the high degree of similarity between

some instances of the classes. Images are supplied with
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segmentations extracting the lesion from surrounding skin.
The dataset is publicly available online, and has a reference
standard measure of performance from prior literature.

ISIC dataset

The second is a dataset obtained through collaboration with
the International Skin Imaging Collaboration (ISIC) [37].
This dataset includes 391 dermoscopy images of melanoma,
and 2,314 dermoscopy images of benign lesions, a subset
of which (225) are considered “near-miss” atypical lesions
(visually similar to melanoma, as judged by medical
professionals). The images of this dataset come without
lesion segmentations. Therefore, for recognition of disease
state, we simply analyzed regions defined by manually
delineated bounding boxes around the areas of the skin
lesions, in order to eliminate erroneous areas of the image
that may influence recognition results.

Broad domain medical image dataset
The purpose of this dataset is to evaluate the performance of
our ensemble algorithm when modeling a broad variety of
medical images, covering modalities, body regions, views, and
in some circumstances, disease states. In order to construct
a dataset diverse enough to achieve this goal, we aggregated
several publicly available datasets. In addition, we further
augmented these data sources with annotated web search
retrieval results to reduce the deficiencies in the existing data.
In total, we collected data for 158 medical imaging
categories, containing 39,811 images. These categories were
organized into a hierarchical taxonomy, ordered by modality,
body region, view, and disease state. Datasets that were
aggregated included the IRMA 2009 dataset [3], The Cancer
Imaging Archives (TCIA) [38], the Japanese Society of
Radiological Technology (JSRT) [39], and those acquired
through collaboration with the ISIC. A full accounting of the
categories and the number of positive exemplars in each
category can be found in the data referenced in the Appendix.
For our experiments, the dataset was split into two
partitions: 80% for model training and 20% as a held-out
test set.
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Table 4 Confusion matrix between echo concept classifiers, according to the Spearman Rank Correlation coefficient.
Values above 0.25 are displayed in bold. Categories include M-mode (MMOD), two-dimensional or B-mode, which

consists of four views of two-chamber (2CH), three-chamber (3CH), four-chamber (4CH), and five-chamber (5CH), and
Doppler echocardiography, which includes continuous wave Doppler (CWD), pulsed wave doppler (PWD), and color
flow Doppler (CFD).

CFD MMOD 2CH 3CH 4CH 5CH CWD PWD

CFD 1.00 0.04 0.37 0.19 0.37 0.11 0.32 0.13
MMOD 0.04 1.00 0.08 0.21 0.05 0.07 0.15 0.17
2CH 0.37 0.08 1.00 0.35 0.22 0.19 0.00 0.23
3CH 0.19 0.21 0.35 1.00 0.59 0.36 0.16 0.04
4CH 0.37 0.05 0.22 0.59 1.00 0.17 0.40 0.07
5CH 0.11 0.07 0.19 0.36 0.17 1.00 0.17 0.05
CWD 0.32 0.15 0.00 0.16 0.40 0.17 1.00 0.15
PWD 0.13 0.17 0.23 0.04 0.07 0.05 0.15 1.00

Table 5 Feature-level mean average precision (MAP)
evaluated at full depth on the ISIC dataset Validation
data partition, including clearly benign lesions.

Table 6 Feature-level mean average precision (MAP)
evaluated at full depth on ISIC dataset Validation data
partition, excluding clearly benign lesions. Note: the
absolute performance values are not comparable to those
of Table 5, since the test set has changed in size and scope.

MAP Feature Granularity
0.977 Lbp512-RGBHS-59 Pyramid23
0.9755 Lbp512-RGBHS-256 Pyramid MAP  Feature Granularity
0.973 Lbp512-RGBHS-256 Pyramid23 0.968 Lbp512-RGBHS-256 Pyramid
0.965 Lbp512-RGBH-59 Pyramid23 0.904 Lbp512-RGBHS-256 Pyramid23
0.962 Lbp512-RGBH-59 Pyramid 0.959 Lbp512-RGBHS-59 Pyramid23
0.942 Lbp512-gray-59 Pyramid23 0.9485  Lbp512-RGBH-59 Pyramid
0.917 Lbp320-grayS9 Pyramid23 0.944 Lbp512-RGBH-59 Pyramid23
0.813 Color-correlogram Pyramid3 0.942 Lbp512-gray-59 Pyramid23
0.804 Color-wavelet Pyramid3 0.938 Image-type Pyramid23
0.756 Image-stats Pyramid3 0.935 Lbp320-gray59 Pyramid23
0.733 Image-type Pyramid23 0.902 Color-wavelet Pyramid3
0.681 Gist Pyramid 0.899 Maxi-thumbnail-vector Global
0.667 Edge-histogram Pyramid23 0.884 Thumbnail-vector Global
0.661 Maxi-thumbnail-vector_global Global 0.881 Edge-histogram Pyramid23
0.64566 Thumbnail-vector Global 0.878 Image-stats Pyramid3
0.622 Mini-thumbnail-vector Global 0.878 Color-correlogram Pyramid3
0.593 Color-histogram Pyramid3 0.877 Mini-thumbnail-vector Global
0.51 Wavelet-texture Pyramid3 0.847 Gist Pyramid
0.499 Fourier-polar Pyramid 0.845 Curvelets Pyramid
0.842 Color-histogram Pyramid3
0.834 Wavelet-texture Pyramid3

Experimental results
In the subsequent sections, we review the details and results
for experiments performed on each of the four datasets.

ImageCLEF 2013 medical modality recognition

For the ImageCLEF 2013 medical modality task, we used our
ensemble modeling system to train 1-vs-all classifiers for
each of the categories. Multiclass decisions were made for
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each image by choosing the concept classifier with the
maximum score.

Classifiers for ImageCLEF were trained using an algorithm
variant for sparse data that implements a multi-stage
retraining process: training data was first split into two sets
of 50%. One set was used to train unit models, while the
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Figure 4

Example visual retrieval results from the Broad Domain Medical image dataset.

other set was used to compute ensembles of unit models for
each category. Subsequently, after ensemble learning, unit
models selected in each ensemble were retrained on 100% of
the available data. This allowed us to maximize the utility of
available data, as some categories in the ImageCLEF 2013
dataset have very few numbers of exemplars.

Additionally, we performed experiments utilizing a
semantic model vector, a descriptor in which each of the
120 dimensions corresponds to the score of a model trained
on a broad domain category (none of the semantic model
vector categories overlaps with ImageCLEF ones). We
compare system performance with and without this
additional feature.

In summary, our ensemble modeling approach yields
81.17% multiclass accuracy without use of a 120-dimensional
broad domain medial semantic model vector, and 82.2% with
the use of this high-level semantic model vector. Both these
performance levels set a new state-of-art.

Individual performance of the top 25 features is
shown in Table 2. The semantic model vector was the
best performing single feature, with SIFT variants and
LBP following.

IBM J. RES. & DEV. VOL. 59 NO. 2/3 PAPER 1 MARCH/MAY 2015

Echocardiography view and mode recognition

In this task, the problem presents with highly unbalanced data.
Some of the categories have a very small number of samples,
others have tens of thousands images. The data was split
into 80% for training and 20% for held-out test. We split the
images in a way that ensures all images of every patient either
belongs to test set or training set. Then we use one-vs-all
classifiers approach to train our ensemble model per each
category. The final predicting label is decided by considering
the maximum score.

Resultant multiclass accuracy was 90.48%. Detailed
performance metrics per category are shown in Table 3.
The confusion matrix between the classifiers according to
their Spearman Rank Correlation on the test set is shown in
Table 4. The most correlated classifiers were 3-chamber
and 4-chamber views. Inspection of Figure 2 confirms that
visually these categories are among the most similar.

Dermoscopy disease recognition

In the following subsections, we review experiments
performed on the two dermatology datasets described in
the section “Dermoscopy disease datasets.”

M. ABEDINIET AL. 1:9



Figure 5

Top-scoring example retrieval results for disease state “Pneumothorax” (lung collapse) for the CT imaging modality. One can clearly identify the
collapsed left lung in the images (chest cavity on right side of image with black air gap as a result of the lung collapse).

PH? dataset

Because of the extreme scarcity of exemplars in the PH2
dataset, ensemble strategies are not effective, as not enough
data is present to perform both unit model training and
ensemble fusion. Therefore, we used a variant of IMARS
that trains a single unit model with early fusions of features.
2-fold cross validation is still used for logistic score fitting
in order to address data imbalance. Evaluations are

carried out in accordance with prior literature, utilizing a
leave-one-out strategy: one example is left out of training,
while models are trained on the remaining data and used
to make a judgment of the sample left out. This is repeated
until all samples have been left out.

Our experimental approach was to start with a simple
feature to describe color, and iteratively add features that
better describe texture, or interactions between color and
texture. We expected to see an improvement in performance
as additional image statistics are involved in the training
process, until the feature combinations become of sufficiently
high dimension that overfitting starts to occur. Indeed, this
is the pattern that our experiments show; however, before
saturation occurs, state-of-art performance was obtained.

In total, we performed four experiments. In the first, we
utilized the color histogram feature at global granularity.
Resultant sensitivity and specificity is 0.675 and 0.9062,
respectively, with an average precision (AP) at full depth
of 0.743. In the second, we concatenated color and edge
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histograms at global granularities. Performance improved to
0.8 and 0.9375 sensitivity and specificity, respectively, with
an average precision at full depth of 0.88. In the third, we
concatenated color, edge, and color LBP histograms (59 bins),
all at global granularities. Performance capped at 0.9 and
0.9 sensitivity and specificity, respectively, with an average
precision of 0.927. Using a threshold where sensitivity
is fixed to a value of 0.93 as reported in prior literature,
this result improves state-of-art by 4% in specificity
(0.88 specificity versus 0.84 in prior reports [22]).

In the fourth and final experiment, we continued to
concatenate additional features, including both “image
type” and “image stats” feature vectors [3]. These features
measure global image statistics, such as mean saturation, hue
entropy, variance and switches, quantized color entropy and
switches, variance, minimum value, maximum value, mean,
median, standard deviation, central moments, average energy
of the first level of 2D wavelet decomposition subbands,
skin color, and number of unique colors in quantized color
space. However, we found performance to decrease, likely
due to overfitting of the small dataset from the feature vector
becoming too large. Sensitivity and specificity reduced to
0.9 and 0.888, respectively, and AP fell to 0.922.

ISIC dataset

As the ISIC dataset is an order of magnitude larger than
the PH2 data, we changed back to the ensemble modeling
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Table 7 Full accounting of Broad Domain Medical 158 concept categories, the number of positive exemplars per
category, and the AP evaluated at full recall on the 20% held-out test set.

Concept No. of exemplars AP
CHART 790 0.966
VIS_DERM_CPWI 2,356 0.993
VIS_DERM_CPWI_ICLEF2013-DVDM-UNKNOWN 80 0.408
VIS_DERM_CPWI_MELANOMA 381 0.844
VIS_DERM_CPWI_NON-MELANOMA 1,895 0.993
VIS_DERM_CPWI_NON-MELANOMA_CHILDREN 1,669 0.997
VIS_DERM_CPWI_NON-MELANOMA_OTHER 226 0.747
CT 12,566 1
CT_BRAIN 169 0.894
CT_CHEST 12,397 1
CT_CHEST_LUNGCANCER 120 0.437
CT_CHEST_NORMAL 12,081 1
CT_CHEST_PNEUMOTHORAX 196 0.843
DERMATOLOGY 6,067 0.999
DERMOSCOPY_CROPPED 1,006 0.993
DERMOSCOPY_WHOLEIMAGE 2,705 0.997
SM_DM 227 0.705
SM_DM_EL 52 0.441
SM_DM_FL 34 0.594
SM_DM_LI 93 0.779
SM_DM_TR 48 0.558
VIS_DERM_DSCPY-CROP_MELANOMA 391 0.839
VIS_DERM_DSCPY-CROP_NON-

MELANOMA_CHILDREN 390 0.933
VIS_DERM_DSCPY-CROP_NON-

MELANOMA_OTHER 225 0.711
VIS_DERM_DSCPY-CROP_NON-MELANOMA 615 0.926
VIS_DERM_DSCPY-WI_MELANOMA 391 0.329
VIS_DERM_DSCPY-WI_NON-

MELANOMA_CHILDREN 2,155 0.998
VIS_DERM_DSCPY-WI_NON-MELANOMA_OTHER 159 0.243
VIS_DERM_DSCPY-WI_NON-MELANOMA 2,314 0.988
DX 16,348 0.999
DX_APPENDAGE 5,811 0.986
DX_APPENDAGE_ARM 3,005 0.924
DX_APPENDAGE_ARM_ELBOW 474 0.872
DX_APPENDAGE_ARM_ELBOW_AP 199 0.804
DX_APPENDAGE_ARM_ELBOW_LAT 274 0.843
DX_APPENDAGE_ARM_FOREARM 198 0.699
DX_APPENDAGE_ARM_FOREARM_AP 91 0.534
DX_APPENDAGE_ARM_FOREARM_LAT 107 0.608
DX_APPENDAGE_ARM_HAND 1,452 0.917
DX_APPENDAGE_ARM_HAND_FINGER 189 0.49
DX_APPENDAGE_ARM_HAND_WHOLE 989 0.886
DX_APPENDAGE_ARM_HAND_WHOLE_AP 860 0.86
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Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive

exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.

DX_APPENDAGE_ARM_HAND_WHOLE_OBL
DX_APPENDAGE_ARM_HAND_WRIST
DX_APPENDAGE_ARM_HAND_WRIST_AP
DX_APPENDAGE_ARM_HAND_WRIST_LAT
DX_APPENDAGE_ARM_SHOULDER
DX_APPENDAGE_ARM_UPPER
DX_APPENDAGE_LEG
DX_APPENDAGE_LEG_ANKLE
DX_APPENDAGE_LEG_ANKLE AP
DX_APPENDAGE_LEG_ANKLE_LAT
DX_APPENDAGE_LEG_FOOT
DX_APPENDAGE_LEG_FOOT_AP
DX_APPENDAGE_LEG_FOOT_LATERAL
DX_APPENDAGE_LEG_FOOT_OBLIQUE
DX_APPENDAGE_LEG_KNEE
DX_APPENDAGE_LEG_KNEE_PATELLA
DX_APPENDAGE_LEG_KNEE_WHOLE
DX_APPENDAGE_LEG_KNEE_WHOLE_AP
DX_APPENDAGE_LEG_KNEE_WHOLE_LAT
DX_APPENDAGE_LEG_LOWER
DX_APPENDAGE_LEG_LOWER_AP
DX_APPENDAGE_LEG_LOWER_LAT
DX_APPENDAGE_LEG_UPPER
DX_APPENDAGE_LEG_UPPER_AP
DX_APPENDAGE_LEG_UPPER_LAT
DX_CRANIUM

DX_CRANIUM_NOSE
DX_CRANIUM_NOSE_LAT
DX_CRANIUM_NOSE_OCCIPITOFRONTAL
DX_CRANIUM_WHOLE
DX_CRANIUM_WHOLE_AP
DX_CRANIUM_WHOLE_FRONTOCCIPITAL
DX_CRANIUM_WHOLE_LAT
DX_HIP_JOINT_AP_ARTIFICIAL
DX_HIP_JOINT_AP_NATURAL
DX_HIP_JOINT_LAT_ARTIFICIAL
DX_HIP_JOINT_LAT_NATURAL
DX_TORSO

DX_TORSO_ABDOMEN
DX_TORSO_ABDOMEN_AP
DX_TORSO_ABDOMEN_BARIUMSWALLOW
DX_TORSO_ABDOMEN_UPPER
DX_TORSO_BREAST
DX_TORSO_BREAST_LEFT
DX_TORSO_BREAST_LEFT_AXIAL
DX_TORSO_BREAST_LEFT_OBL
DX_TORSO_BREAST_RIGHT
DX_TORSO_BREAST_RIGHT_AXIAL

129
273
135
138
792
88
2,806
450
242
208
827
494
151
181
1,042
123
918
550
368
245
156
88
241
168
72
1,338
406
64
342
931
436
50
445
112
167
26
68
9,698
467
247
177
43
335
171
85
86
164
80

0.879
0.871
0.895
0.786

0.94
0.295
0.925
0.967
0.973
0.925
0.871
0.813
0.573
0.663
0.927
0.958
0.911
0.908
0.871
0.563
0.501
0.322
0.527
0.569
0.407

0.97
0.904
0.739
0.926
0.978
0.963
0.759
0.946
0.616
0.484
0.165

0.67
0.995
0.833
0.882
0.711
0.863
0.984
0.971
0.902
0.921

0.97
0.902
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Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive
exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.

DX_TORSO_BREAST_RIGHT_OBL 84 0.875
DX_TORSO_CHEST 6,308 0.998
DX_TORSO_CHEST_FULL 6,308 0.999
DX_TORSO_CHEST_FULL_AP 5,043 0.999
DX_TORSO_CHEST_FULL_AP_LUNGCANCER 594 0.931
DX_TORSO_CHEST_FULL_AP_NORMAL 383 0.291
DX_TORSO_CHEST_FULL_AP_PNEUMONIA 262 0.261
DX_TORSO_CHEST_FULL_AP_PNEUMOTHORAX 217 0.364
DX_TORSO_CHEST_FULL_AP_UNKNOWN 3,587 0.998
DX_TORSO_CHEST_FULL_LAT 1,265 0.996
DX_TORSO_CHEST_FULL_LAT_LUNGCANCER 202 0.965
DX_TORSO_CHEST_FULL_LAT_NORMAL 21 0.109
DX_TORSO_CHEST_FULL_LAT_UNKNOWN 1,042 0.992
DX_TORSO_HIP 821 0.945
DX_TORSO_HIP_JOINT 373 0.863
DX_TORSO_HIP_JOINT_AP 279 0.712
DX_TORSO_HIP_JOINT_LAT 94 0.806
DX_TORSO_HIP_PELVIS 447 0.98
DX_TORSO_HIP_PELVIS_ARTIFICIAL 94 0.779
DX_TORSO_HIP_PELVIS_NATURAL 353 0.944
DX_TORSO_SPINE 1,767 0.978
DX_TORSO_SPINE_CERVICAL 798 0.963
DX_TORSO_SPINE_CERVICAL_AP 294 0.951
DX_TORSO_SPINE_CERVICAL_LAT 503 0.924
DX_TORSO_SPINE_LUMBAR 668 0.945
DX_TORSO_SPINE_LUMBAR_AP 365 0.901
DX_TORSO_SPINE_LUMBAR_LAT 303 0911
DX_TORSO_SPINE_THORACIC 300 0.979
DX_TORSO_SPINE THORACIC_AP 144 0.966
DX_TORSO_SPINE_THORACIC_LAT 156 0.959
ECG 1,131 0.994
ECG_FIBRILLATION 734 0.714
ECG_NORMAL 397 0.602
VIS_ICLEF2013-DVEN 65 0.744
VIS_ICLEF2013-DVOR 71 0.595
CHART_ICLEF2013-GCHE 65 0.862
CHART_ICLEF2013-GFIG 107 0.872
CHART_ICLEF2013-GFLO 100 0.593
CHART_ICLEF2013-GGEL 70 0.728
CHART_ICLEF2013-GGEN 90 0.638
CHART_ICLEF2013-GHDR 47 0.691
CHART_ICLEF2013-GMAT 21 0.206
VIS_ICLEF2013-GNCP 97 0.748
CHART_ICLEF2013-GPLI 29 0.833
CHART_ICLEF2013-GSCR 95 0.576
CHART_ICLEF2013-GSYS 96 0.27
CHART_ICLEF2013-GTAB 70 0.593
MR 1,276 0.929
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Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive
exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.

MR_APPENDAGE

MR_BRAIN
MR_BRAIN_AXIAL
MR_BRAIN_AXIAL_COLLAGE
MR_BRAIN_AXIAL_SINGLE
MR_BRAIN_SAGITTAL
MR_HIP

MR_KNEE

MR_SPINE

PET

PET_BW

PET_COLOR

SM

SM_BLOODSMEAR
SM_BLOODSMEAR_NORMAL
SM_BLOODSMEAR_SICKLECELL
uUsS

US_CARDIAC

US_FETUS

VIS

416 0.855
518 0.877
333 0.739
134 0.605
198 0.785
185 0.876
125 0.563
416 0.847
217 0.863
304 0.897
166 0.823
138 0.896
645 0.949
418 0.967
360 0.78
58 0.37
490 0.965
233 0.777
257 0.82
6,300 0.999

algorithm. For our experiments, we studied two variants of
the ISIC dataset. The first includes data from lesions that are
clearly benign, and the second excludes data from clearly
benign lesions, which may result in a more difficult task. For
both experiments, 80% of data was used for training, and
20% was used to test the algorithm.

Experiments with clearly benign lesions involved
391 images of melanoma, 225 images of atypical lesions,
and 2,536 clearly benign lesions. Resultant AP at full depth
was 0.967. At the cutoff threshold of 0.5 (logistically
normalized SVM scores), we measured a sensitivity of
0.987 and specificity of 0.9482. At threshold with fixed
sensitivity values of 0.99, the experiment yields a specificity
value of 0.9445.

Excluding clearly benign lesions (391 melanoma,

225 atypical), resultant AP at full depth was 0.983. At the
cutoff threshold, trained models produced a sensitivity of
0.846 and a specificity of 0.9375. At a threshold with fixed
sensitivity values of 0.99, the experiment yielded a specificity
value 0.594.

Table 5 shows the average precision of our low-level
features on the Validation partition of the ISIC dataset
including clearly benign lesions (feature types and
granularities are as specified in the section “Visual modeling
approach”). Table 6 presents the same analysis for the dataset
excluding benign lesions. LBP features have specified the
standard square size that images are rescaled to 320 x 320 or
512 x 512, the color channels (gray, Red, Green, Blue, Hue,
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Saturation), and the number of bins in the histogram (59 or
256). Granularities are appended to the end (see the section
“Visual modeling approach”). For review, “global” is simply
feature extracted from the whole image (1 x 1). “Pyramid”
is whole image (1 x 1) concatenated with quarters (2 x 2).
“Pyramid23” is whole image (1 x 1) concatenated with
quarters (2 x 2), concatenated with ninths (3 x 3).

Clearly, color LBP features dominate. Using 256 bins as
opposed to 59 bins appears to yield no benefit. Additional
pyramid levels add marginal benefit. Increasing resolution of
image rescaling before feature extraction brings improved
performance.

To demonstrate the importance of the ensemble fusion
involving multiple features, we re-ran the experiment
excluding clearly benign lesions with the single top
performing feature in that scenario. Resultant threshold
sensitivity was 0.872, with a specificity of 0.901. Ata
threshold with sensitivity of 0.99, specificity is reduced
to 0.438.

Broad domain medical image recognition

In our broad domain medical image recognition experiments,
we trained 158 one-vs-all classifiers for each of the categories
in the dataset. The size of the data subsamples, or “bags,”
for each feature were up to 5,000 positive exemplars and
5,000 negative examples, and 10 bags per feature to cover the
entire data space. Evaluation is carried out on the held-out
20% dataset.
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Given that concepts are defined in a hierarchical fashion,
positive and negative exemplars may be sampled from one or
more concepts in the dataset (children or siblings/cousins).
We employed two strategies of sampling data across multiple
concepts in these scenarios: 1) concept proportions in the
data subsample equals proportions seen in the training data
and 2) concept proportions in the data subsample is equalized
so that each category receives as equal a representation as
possible, while still filling the bag.

Example visual retrieval results are depicted in Figure 4.
More detailed results for an example disease state,
pneumothorax, within the “CT” modality and “Chest” body
region are shown in Figure 5. In summary, the ensemble
model strategy using the second equal representation
sampling yielded the highest mean average precision (MAP)
0f 0.792, slightly above the first sampling strategy, which
yielded an MAP of 0.785. Average accuracy was 0.984,
with an average sensitivity of 0.947 and specificity of 0.984.
Correlating concept classifier performance, in terms of AP,
with the tree-depth of the concept in the hierarchy yielded
no significant correlation (R? = 0.024), suggesting the
general to specific ordering of concepts was not predictive of
resultant classifier quality. Individual classifier performance
metrics for each category can be found in the Appendix.

In total, this task required training over 26,000 SVMs
(over 78,000 counting cross-fold validation) and learning
158 ensembles. Utilizing our hardware resources (see
the section “Visual modeling approach”), training took
9.5 hours. Once features are pre-extracted, scoring the models
on the test set (8,000 images) took 12 minutes on 700 cores.
This translates to 0.4 seconds per instance, per classifier,
per core. Feature extraction required just under an additional
2.5 seconds per core, yielding a total evaluation time of
approximately 3 seconds per image, per classifier, per core.

Clearly, the ability to arbitrarily scale to 700 cores made
the large-scale experiment feasible. On a single core, the
same experiment would have taken over 290 days to train
and 6 days to evaluate.

Scaling our experiment even further, we studied how
performance might be improved if we optimized SVM kernel
selection for each unit model trained. For this experiment,
four kernels were trained for each unit model, and the best
performing selected for use. The four kernels spanned
histogram intersection and chi-squared kernels, with varying
values of misclassification costs. Resultant MAP increased to
0.801, from 0.792, an improvement of approximately 1%.
Since optimizing over four kernels required training four
times as many SMVs (over 100,000), the cost/benefit ratio is
clearly very high in comparison to using a single SVM kernel.

Conclusion

We presented a flexible and scalable modeling system for
recognition of medical image categories. Performance
was evaluated in the following four contexts: 1) modality,
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Table 8 List of acronyms for the Broad Domain

Medical dataset.

Abbreviation

Meaning

AP Anterior-posterior view

BW Grayscale color spectrum

CPWI Clinical Photography (Whole Image)
CT Computed Tomography

DERM Dermatology

DM Dermoscopy (ImageCLEF)
DSCPY-CROP Dermoscopy (Cropped ISIC)
DSCPY-WI Dermoscopy (Whole Image ISIC)
DVDM-UNKNOWN Dermatology (Undiagnosed)
DVEN Endoscopy

DVOR Other Organs

DX Digital X-Ray

ECG Electrocardiogram

EL Electron Microscopy

FL Fluorescent Microscopy

GCHE General (chemical structure)
GFIG General (figure)

GFLO General (flow diagram)

GGEL General (chromatography gel)
GGEN General (gene sequence)

GHDR General (hand drawn)

GMAT General (math equation)

GNCP General (non-clinical photograph)
GPLI General (program listing)

GSCR General (screenshot)

GSYS General (system diagram)

GTAB General (table)

ICLEF2013 ImageCLEF2013 Inherited Concept
LAT Lateral view

LI Light microscopy

MR Magnetic Resonance

OBL Oblique

PET Positron emission tomography
SM Slide microscopy

TR Transmission microscopy

us Ultrasound

VIS Visible light spectrum images

2) echocardiography view and mode, 3) melanoma, and

4) broad medical domain categories. In the first context, our
system achieved state-of-art performance of 82.2% on the
public ImageCLEF 2013 benchmark dataset. In the second,
the system achieved performance of 90.48% multiclass
accuracy. In the third, we achieved state-of-art performance
on a small public benchmark dataset of 200 images and
demonstrated an ability to generalize to a larger dataset

obtained through collaboration with the ISIC. In the fourth
and last context, we studied the system’s ability to scale to
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158 medical concepts covering broad and specific categories
of modality, body region, view point, and disease. Resultant
performance yielded average sensitivity and specificity of
0.95 and 0.98, respectively.

In summary, the proposed ensemble visual modeling
system has been shown to be an effective tool for a broad
range of medical image categories. Further research is
warranted to study combining the framework with libraries
of more specialized techniques and algorithms targeted for
finely detailed local analysis and quantitative measurements
in specific modalities, body regions, and views, which
have the potential to improve the ability to extract relevant
evidence to support the diagnosis of more disease states.

Appendix I: Broad domain 158 categories

The categories of our curated dataset, and the number of
instances contained within each, are displayed in Table 7.
The full path in the hierarchy is designated with underscores,
which indicate a new branch. Abbreviations are outlined

in Table 8.

**Trademark, service mark, or registered trademark of National Library
of Medicine, MELA Sciences, Apache Software Foundation in the
United States, other countries, or both.
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