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In this work, we study the performance of a two-stage ensemble
visual machine learning framework for classification of medical
images. In the first stage, models are built for subsets of features and
data, and in the second stage, models are combined. We demonstrate
the performance of this framework in four contexts: 1) The public
ImageCLEF (Cross Language Evaluation Forum) 2013 medical
modality recognition benchmark, 2) echocardiography view and
mode recognition, 3) dermatology disease recognition across two
datasets, and 4) a broad medical image dataset, merged from
multiple data sources into a collection of 158 categories covering
both general and specific medical conceptsVincluding modalities,
body regions, views, and disease states. In the first context, the
presented system achieves state-of-art performance of 82.2%
multiclass accuracy. In the second context, the system attains 90.48%
multiclass accuracy. In the third, state-of-art performance of 90%
specificity and 90% sensitivity is obtained on a small standardized
dataset of 200 images using a leave-one-out strategy. For a larger
dataset of 2,761 images, 95% specificity and 98% sensitivity is
obtained on a 20% held-out test set. Finally, in the fourth context,
the system achieves sensitivity and specificity of 94.7% and 98.4%,
respectively, demonstrating the ability to generalize over domains.

Introduction
Medical image data has been growing by 20% to 40%
every year [1], whereas the number of physicians per capita
in the United States has remained relatively flat since the
1990s [2]. This trend makes automatic classification and
categorization of medical images important so that clinicians
are better able to handle the increasing workload demands
placed on them. The primary challenge for medical image
recognition is its broad domain. Medical images vary by type
[e.g., illustration, radiological, electrocardiogram (ECG),
or dermatological photograph], modality [e.g., x-ray,
magnetic resonance imaging (MRI), ultrasound, or
dermoscopy], body region [e.g., brain, heart, chest, or arms],
view [e.g., anterior-posterior or superior-inferior], and
disease [e.g., infarct, melanoma, or healthy], giving rise to
potentially millions of categories. In order for a modeling
system to cover such a diverse range of categories, it must be

arbitrarily scalable along three orthogonal dimensions: the
number of categories the system can model, the amount of
data the system can handle (in terms of images), and number
of algorithmic approaches the system can utilize. The third
dimension is especially important, as no one approach
can perform well across all domains in this problem space:
an effective system must involve a number of approaches,
each of which can be selected based on which best
recognizes or models a given category.
In order for research and development to take place in

the space of medical image retrieval, datasets must be
constructed from which experiments can be performed.
Such datasets must contain both image data, as well
as labeling structures that are expressive enough to
comprehensively capture the diagnostic and categorical
information contained within. In addition, these datasets
must be large enough to adequately cover the visual variety
of the various domains they represent. Some recent public
datasets that seek to address these requirements have been
Image Retrieval in Medical Applications (IRMA) [3] and the
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ImageCLEF (Cross Language Evaluation Forum) Medical
Task [4].
IRMA is a comprehensive hierarchical coding structure

covering medical image modality, body region, and view.
This data structure has been initially populated with
data limited to projection radiography (x-ray). Several
approaches have been implemented and tested with
respect to the dataset. One of the more effective
methods has involved the use of classifiers trained from
Bags-of-Visual-Word histogram features aggregated over
images patches [5]. Other recent work with this dataset,
including SPIRS-IRMA [6, 7] (Spine Pathology and
Image Retrieval SystemVImage Retrieval in Medical
Applications), has attempted to fuse image level modeling
approaches with more localized and specialized methods,
such as segmentation approaches, that are capable of
quantifying more subtle disease states. While these methods,
which are based on common techniques in computer vision
and multimedia, have performed well on this initial data
population of IRMA, it is unclear from the published
experiments how they would scale, in terms of recognition
performance, to other domains within medicine.
The ImageCLEF Medical Task is another well-known

medical imaging benchmark that has established various
challenges over time. The IRMA dataset was featured in this
task over a number of years (2005 to 2009). More recently,
ImageCLEF has begun to focus predominantly on medical
imagemodality recognition, using a subset of data from a large
corpus of PubMed* articles. The image data covers a larger
breadth of modalities than IRMA, which was limited to
projection x-ray imaging; however, the hierarchy is shallow,
not discriminating between body regions, views, or diseased
states. A number of algorithmic approaches were evaluated
with respect to this dataset, with the best ones achieving in the
range of 75% to 80% multiclass accuracy [4, 8].
Other studies have also been spawned in more specialized

areas of medical image retrieval and analysis. These
include echocardiography view recognition [9, 10] and
dermatology image recognition of melanoma.
The determination of echocardiography view and mode

is an essential step in automatic cardiac echo image analysis.
In an echocardiogram exam, the position and angulation of a
2D ultrasound probe changes the views, and consequently
may change the most appropriate analytic algorithm to be
applied. Many recent studies have been performed in this
area. Ebadollahi et al. [11] proposed a chamber detector
based on a generic cardiac chamber template. They used a
Markov Random Field (MRF) to locate the chambers and
a multi-class Support Vector Machine (SVM) classifier to
predict the chamber view. In this approach, the end-diastolic
(ED) frame, where the heart is most dilated, is a key clue
for identifying the structure and location of chambers.
Zhou et al. [12] introduced a similar approach by using
ED keyframes and boosted weak classifiers of Haar-like local

rectangle features for identifying heart structure and view
classification. Otey et al. [13] implemented a hierarchical
classification model to identify view type in the upper level,
and then view classification in the lower level. They fed
well-recognized low-level features, such as gradient, peak,
raw pixels, and other statistical features, extracted from
images to a Logistic Decision Tree at both levels. Park et al.
[14] extended the work by using an MLBoost learning
algorithm. Beymer et al. [9, 15] proposed incorporating
motion information, by using Active Shape Models (ASMs),
for view classification, extracting the shape and texture
information, and then tracking these across different frames
to derive motion information. Kumar et al. [16] extended
this approach by using vocabulary-based PMK (Pyramid
Match Kernel) and multiclass. González et al. [17] used
a multilayer neural network for view prediction. In recent
work, Wu et al. [18] built SVM classifiers trained on
extracted Gist low-level features, as Gist provides a global
description of the image. Agarwal et al. [19] proposed using
SVMs modeled over Histogram of Oriented Gradients
(HOG) as a low-level feature. HOG extracts structural
information using a set of local histograms.
In dermatology, image analysis is an important problem,

as skin cancer is the most common form of cancer in the
United States [20]. Every year, over 3.5 million incidences are
reported in 2 million people. Every 57 minutes, one person
dies of melanoma. Survival rate is 98% with early detection,
and 62% when disease reaches lymphatics. Diagnosis of
disease is still a very subjective process, varying within
clinicians, across clinicians, and between institutions. Quality
of care can quickly degrade with lack of experience. Even
when expertise is available, accuracy of dermatology experts
is estimated between 75% and 84% [21], which leads both to
missed diagnoses as well as to unnecessary and potentially
disfiguring biopsies. As a result, a multitude of recent work
has strived to develop objective image analysis software to aid
in the diagnosis of melanoma.
One such work by Barata et al. [22] has endeavored to

explore a subset of modeling algorithms toward melanoma
detection. In this work, Barata et al. break down the approach
into segmentation, feature extraction, and modeling. Within
each, learning parameters are varied, and the impacts on
performance are assessed over a dataset of 176 images
(25 melanomas and 151 nevi). In the segmentation phase,
two types are attempted: a whole-lesion segmentation and
an interior-lesion segmentation with a border segmentation.
The latter mimics the commonly used pyramid or other
multi-granularity approaches of the computer vision
fieldVfeatures are extracted from each region independently,
and concatenated via early feature fusion. In the feature
extraction phase, two relatively simple features are utilized:
edge and color histograms. These are either extracted at a
global scale, or locally pooled into a histogram using the
common bag-of-visual-words approach. In the modeling

1 : 2 M. ABEDINI ET AL. IBM J. RES. & DEV. VOL. 59 NO. 2/3 PAPER 1 MARCH/MAY 2015



phase, three variants were studied: kNN (k-Nearest
Neighbors), SVM, and AdaBoost. For each, parameters
are also varied to optimize the technique. In general, color
histograms were found to outperform edge histograms, local
pooling was found to improve over global methods, and
multi-region segmentation was found to improve over single
region. Top performance measures were in the realm of 96%
and 80% for sensitivity and specificity. While the achieved
performance in this work is quite high, the results are
measured using a leave-one-out procedure on a very
limited dataset of under 200 images; therefore, whether
the conclusions of the work generalize to larger datasets
remain unknown.
Garnavi et al. [23] developed a computer-aided diagnostic

system for melanoma; the segmentation method [24]
involved a hybrid of global thresholding to detect an initial
boundary of the lesion, and then application of an adaptive
histogram thresholding on optimized color channels of X
(from the CIE XYZ color space) to refine the border. The
system applied a combination of texture and border-based
features, and utilized Gain Ratio to identify optimal features
to be used in the classification of melanoma lesions. This
approach achieved a significant reduction in the dimension
of the feature space (by a factor of 1,542), while increasing
the accuracy by 12% and decreasing the computational
time by a factor of 50. Applying a random forest classifier
on a set of 289 dermoscopy images (114 malignant,
175 benign) partitioned into train, validation, and test
image sets, the system achieved an accuracy of 91.26%

and an area-under-curve value of 0.937, using 23 optimal
features. Experiments demonstrated higher contribution
of texture features than border-based features in the
optimized feature set.
Commercial products for melanoma recognition have

also been developed and subjected to U.S. Food and
Drug Administration (FDA) clinical trial. One such product
is MelaFind*, which has been studied on a dataset of
1,632 images (175 melanoma), which achieved high
sensitivity (98.3%) but low specificity (10.8%), making
it difficult to adopt in practice [25].
In this work, we present a visual modeling architecture

that is sufficiently flexible and scalable to cover a wide
spectrum of domains in classification of medical images.
In BVisual modeling approach,[ we describe the algorithms
and implementation, which is based on a two-stage ensemble
approach that is implemented in the Hadoop* Map-Reduce
parallelization framework for arbitrary scalability. In
BDatasets,[ we describe the datasets in which we evaluate
our architecture, covering the following four medical
imaging domains: 1) the ImageCLEF2013 medical image
modality classification benchmark, a space in which our
algorithm is directly comparable to other algorithms designed
for this task, 2) a specialized task of echocardiography view
and mode recognition, 3) a specialized task of melanoma
recognition in two datasets, including the previously
mentioned dataset [22], as well as a more recent dataset of
over 2,000 images, and 4) a broad medical image category
recognition dataset, where we merged multiple datasets into

Figure 1

Overview of the IMARS training visual pipeline. Training data is partitioned into Learning and Validation sets. Unit Models are trained on the Learning
partition. Fusion of unit models is optimized on the Validation partition.
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a collection of 158 categories covering both general and
specific medical concepts including modalities, body regions,
views, and disease states. In the section BExperimental
results,[ we describe our experiments and results for each
of these datasets, and the paper ends with a conclusion.

Visual modeling approach
We study the efficacy of a variant of an ensemble modeling
approach [26, 27]. Specifically, we implement several
improvements to the IMARS visual learning framework
[28, 29]. IMARS is a two-stage ensemble learning pipeline,
whereby training data is partitioned into a BLearning[ and
BValidation[ partition (Figure 1). A variety of low-level
features are extracted (and normalized) over the training data,
including color histogram, edge histogram, Gist, color
correlogram, and LBPs (Local Binary Patterns), among other
global and local descriptors [30–35]. Some of the features
used have been reported in prior literature related to medical
image modality classification [3]. Each feature is extracted
over a variety of spatial granularities, such as global (entire
image), horizontal parts (three equally sized horizontal
segments), and layout (four quarters, and the image center).
Then, for each category, unit models are trained on subsets
of data and single feature types from the Learning partition.
These subsets are referred to as Bbags.[ For each unit
model training task, the system may use a variety of machine
learning algorithms and parameters, specified by the user, and
optimize the selection based on cross-fold validation. Once
unit models are trained, they are then input to a forward model
selection learning process on the Validation set. Forward
model selection will automatically determine an optimal
ensemble of unit models (data and features), relieving the user
of any guess-work into what features should be used for
modeling. This is done by first initiating the ensemble model
with the single unit model that achieves best performance
on the Validation dataset. Subsequently, a search is performed
to find the unit model that, when combined with the existing
ensemble, boosts performance the most. This process is
continued until performance saturates.
For large-scale training and scoring, we used the Hadoop

Map-Reduce implementation of IMARS for large-scale
ensemble classifier learning [28, 29]. In this method, unit
models are learned in the Hadoop Map stage, where each
task is independent, and ensembles are optimized in
the Hadoop Reduce stage, where independent tasks are
aggregated. Classifier scoring happens in a likewise fashion:
unit models are scored against image features in a Map stage,
and ensembles of unit model outputs are aggregated in the
Reduce stage. A physical cluster of approximately 800 CPU
cores (�700 used for data processing and �100 reserved
for OS tasks), 3.1 TB of total system memory, and 70 TB
of hard disk storage is used for experiments.
For the purposes of this work, several improvements to

the IMARS visual learning pipeline have been implemented.

These include low-level features, modeling algorithms,
score normalization, and synthetic minority oversampling
techniques.
The first group of enhancements involves additional

sets of spatial granularities in which features are extracted.
These include Bpyramid[ and Bpyramid23.[ BPyramid[
granularity is a spatial pyramid with global scope as the
first level (1 � 1 image grid), followed by a 2 � 2 image grid
as the second level (which increases feature dimensionality
by a factor of 5). BPyramid23[ uses global (1 � 1) as
first level, 2 � 2 image grid as second level, and 3 � 3 as
the third level (which increases feature dimensionality by a
factor of 14).
The second group of enhancements involves additional

implemented visual features. In addition to those previously
involved in the IMARS framework, we add variations of

Table 1 Categories of the ImageCLEF 2013
benchmark.
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Multiscale and Multi-Color Channel LBPs and Spatially
Invariant Feature Transforms (SIFT), as well as Fourier
Polar Pyramids. Color LBP [30, 31] is an extension
of the common grayscale LBP, whereby LBP descriptors
are extracted across five color channels (Red, Green, Blue,
Saturation, and Hue), with one histogram per color channel.
For a 59-bin (58 uniform and 1 non-uniform) LBP histogram,
this results in 59� 4 ¼ 236 total bins. A full 256 bin
variant is also extracted. Multiscale LBP (which can
be implemented in conjunction with Multi-color) is
implemented by extracting LBP descriptors over various
image sizes, and aggregating the descriptors into the
same histogram bins, weighted by the inverse of the
image size.
SIFT constitutes descriptors extracted around Harris

Laplace interest points. Each keypoint is described with
a 128-dimensional vector containing oriented gradients.
We obtain a visual word dictionary of size 1,000 by running
K-means clustering on a random sample of approximately
300,000 interest point features from the ImageCLEF 2013
PubMed image corpus. We then represent each image with a
histogram of visual words. We extracted two codebooks,
starting from two different random samples of points.

We used soft assignment following Van Gemert et al. [34]
using � ¼ 90. This descriptor was extracted using the
executable publicly available from the University of
Amsterdam [33] and from the VLFeat library [35]. We
also extracted variations of the SIFT descriptor in different
color spaces, namely RGB (red, green, blue), HSV (hue,
saturation, value), and opponent channels.
The Fourier polar pyramid is similar to the curvelet feature,

whereby each element of the feature vector represents
the average of some region of Fourier-Mellin space. However,
the regions are partitioned into a pyramid structure,
introducing various degrees of scale and rotation invariance.
The third group of improvements applies to modeling in

cases of data scarcity (opposite of large-scale conditions).
Specifically, we implemented a variant of the IMARS system
that can retrain unit models on the full 100% of training data,
if no data subsampling was earlier employed for training of
unit models. This helps boost the performance and ability
of the unit models to generalize, while still supporting feature
selection and ensemble model optimization. In cases of
extreme data scarcity, ensembles of late fusion may be
replaced with a single unit model trained over an early
fusion of features.

Figure 2

Examples of echocardiography view and mode. Two-dimensional (2D) mode two- to four-chamber views depict varying numbers of cardiac anatomical
chambers. The five-chamber view includes visualization of the aortic outflow tract. M-mode refers to BMotion Mode,[ where movement of anatomical
surfaces is visualized. Continuous wave Doppler (CW-Doppler) samples a line through the body, whereas pulsed wave localizes sampling within a small
volume. Color Doppler overlays Doppler information on a 2D mode image.
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In addition, the Synthetic Minority Oversampling
Technique (SMOTE) has been implemented, which creates
additional synthetic minority class training instances by
taking linear combinations of data samples in feature space
with their k-nearest neighbors.
The fourth and final improvement made to the system

is the way model scores are mapped. Instead of the
typical �infinity to þinfinity of the SVM, we map scores
to a logistic function that has been fit to the probabilities
that a classifier score yields an instance of the positive
class on a balanced dataset (computed during unit model
cross-validation) [36].

Datasets
We demonstrate the performance of our visual analytics
system in a collection of four medical imaging domains.
All datasets were provided in de-identified form, intended
for research purposes, according to HIPAA (Health Insurance
Portability and Accountability Act) guidelines. In the first
domain, we use a public medical image modality benchmark
dataset. In the second domain, we utilize a collection of
echocardiography video sequences of 340 patients, which
involves 3 modes and 7 views (see BEchocardiography view
and mode dataset[). In the third domain, we used two datasets
of dermatology dermoscopy images that exhibit diseased
states of melanoma and benign non-melanoma lesions. In
the fourth domain, we aggregated multiple available datasets
to create a collection of 158 categories covering various
modalities, body regions, views, and disease states.

Standardized public ImageCLEF 2013 medical
modality dataset
We utilized the ImageCLEF 2013 Modality Classification
dataset [4], which contains 31 categories and is partitioned
into fixed training and test datasets. The categories cover
a wide variety of diagnostic medical images found in

PubMed journal articles, across domains such as radiography
(x-ray, computed tomography, magnetic resonance
imaging, positron emission tomography, etc.), pathology

Figure 3

Examples from the PH2 dermoscopy dataset. BMelanoma[ represents malignant disease lesions. Atypical nevi are lesions of suspicion, but non-
malignant at time of imaging. Common nevi are benign lesions. Note the high degree of visual similarity between the classes.

Table 2 Top 25 low-level features and resultant mean
average precision (MAP) on ImageCLEF 2013 validation
data partition.
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(slide microscopy and electron microscopy), laboratory
tests (chromatography gels), electrical signals
(electrocardiograms), and visible light (endoscopy and
dermoscopy). For the full accounting of categories, see
Table 1. The training dataset contains 2,845 images, and
the test set contains 2,582 images. Benchmark performance
is measured by multiclass accuracy.

Echocardiography view and mode dataset
Our echo dataset consists of 340 patients and
2,158 echocardiographic sequences depicting a variety of
cardiac diseases in patients including aneurysms (89), dilated
cardiomyopathy (76), hypertrophies (78), and normal LV (left
ventricle) size and function (448). Image frames have been
extracted from video sequences, with the dataset involving
a combination of mode and views: M-mode (MMOD),
2D or B-mode [which consists of four views of two-chamber
(2CH), three-chamber (3CH), four-chamber (4CH), and
five-chamber (5CH)], and Doppler echocardiography, which
includes continuous wave (CW) Doppler (CWD), pulsed
wave (PW) Doppler (PWD), and color flow Doppler (CFD).
Therefore, we have eight categories/classes with total number
of 83,381 images with very diverse distributions; M-mode
(48), two chamber (7,524), three chamber (13,168), four
chamber (27,954), five chamber (5,474), CW-Doppler (254),
PW-Doppler (124), and color Doppler (28,835). Figure 2
shows visual examples of these categories.

Dermoscopy disease datasets
For our experiments in dermoscopy melanoma recognition,
we have utilized two datasets, summarized in the following
subsections.

Pedro Hispano Hospital dataset
The first is the Pedro Hispano Hospital (PH2) dataset,
containing a total of 200 images (40 instances of melanoma,
and 160 instances of non-melanoma, including 79 atypical
nevi). Figure 3 shows example images from this dataset,
emphasizing the high degree of similarity between
some instances of the classes. Images are supplied with

segmentations extracting the lesion from surrounding skin.
The dataset is publicly available online, and has a reference
standard measure of performance from prior literature.

ISIC dataset
The second is a dataset obtained through collaboration with
the International Skin Imaging Collaboration (ISIC) [37].
This dataset includes 391 dermoscopy images of melanoma,
and 2,314 dermoscopy images of benign lesions, a subset
of which (225) are considered Bnear-miss[ atypical lesions
(visually similar to melanoma, as judged by medical
professionals). The images of this dataset come without
lesion segmentations. Therefore, for recognition of disease
state, we simply analyzed regions defined by manually
delineated bounding boxes around the areas of the skin
lesions, in order to eliminate erroneous areas of the image
that may influence recognition results.

Broad domain medical image dataset
The purpose of this dataset is to evaluate the performance of
our ensemble algorithm when modeling a broad variety of
medical images, coveringmodalities, body regions, views, and
in some circumstances, disease states. In order to construct
a dataset diverse enough to achieve this goal, we aggregated
several publicly available datasets. In addition, we further
augmented these data sources with annotated web search
retrieval results to reduce the deficiencies in the existing data.
In total, we collected data for 158 medical imaging

categories, containing 39,811 images. These categories were
organized into a hierarchical taxonomy, ordered by modality,
body region, view, and disease state. Datasets that were
aggregated included the IRMA 2009 dataset [3], The Cancer
Imaging Archives (TCIA) [38], the Japanese Society of
Radiological Technology (JSRT) [39], and those acquired
through collaboration with the ISIC. A full accounting of the
categories and the number of positive exemplars in each
category can be found in the data referenced in the Appendix.
For our experiments, the dataset was split into two

partitions: 80% for model training and 20% as a held-out
test set.

Table 3 Experimental results for echocardiography view and mode detection.
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Experimental results
In the subsequent sections, we review the details and results
for experiments performed on each of the four datasets.

ImageCLEF 2013 medical modality recognition
For the ImageCLEF 2013 medical modality task, we used our
ensemble modeling system to train 1-vs-all classifiers for
each of the categories. Multiclass decisions were made for

each image by choosing the concept classifier with the
maximum score.
Classifiers for ImageCLEF were trained using an algorithm

variant for sparse data that implements a multi-stage
retraining process: training data was first split into two sets
of 50%. One set was used to train unit models, while the

Table 4 Confusion matrix between echo concept classifiers, according to the Spearman Rank Correlation coefficient.
Values above 0.25 are displayed in bold. Categories include M-mode (MMOD), two-dimensional or B-mode, which
consists of four views of two-chamber (2CH), three-chamber (3CH), four-chamber (4CH), and five-chamber (5CH), and
Doppler echocardiography, which includes continuous wave Doppler (CWD), pulsed wave doppler (PWD), and color
flow Doppler (CFD).

Table 5 Feature-level mean average precision (MAP)
evaluated at full depth on the ISIC dataset Validation
data partition, including clearly benign lesions.

Table 6 Feature-level mean average precision (MAP)
evaluated at full depth on ISIC dataset Validation data
partition, excluding clearly benign lesions. Note: the
absolute performance values are not comparable to those
of Table 5, since the test set has changed in size and scope.
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other set was used to compute ensembles of unit models for
each category. Subsequently, after ensemble learning, unit
models selected in each ensemble were retrained on 100% of
the available data. This allowed us to maximize the utility of
available data, as some categories in the ImageCLEF 2013
dataset have very few numbers of exemplars.
Additionally, we performed experiments utilizing a

semantic model vector, a descriptor in which each of the
120 dimensions corresponds to the score of a model trained
on a broad domain category (none of the semantic model
vector categories overlaps with ImageCLEF ones). We
compare system performance with and without this
additional feature.
In summary, our ensemble modeling approach yields

81.17% multiclass accuracy without use of a 120-dimensional
broad domain medial semantic model vector, and 82.2% with
the use of this high-level semantic model vector. Both these
performance levels set a new state-of-art.
Individual performance of the top 25 features is

shown in Table 2. The semantic model vector was the
best performing single feature, with SIFT variants and
LBP following.

Echocardiography view and mode recognition
In this task, the problem presents with highly unbalanced data.
Some of the categories have a very small number of samples,
others have tens of thousands images. The data was split
into 80% for training and 20% for held-out test. We split the
images in a way that ensures all images of every patient either
belongs to test set or training set. Then we use one-vs-all
classifiers approach to train our ensemble model per each
category. The final predicting label is decided by considering
the maximum score.
Resultant multiclass accuracy was 90.48%. Detailed

performance metrics per category are shown in Table 3.
The confusion matrix between the classifiers according to
their Spearman Rank Correlation on the test set is shown in
Table 4. The most correlated classifiers were 3-chamber
and 4-chamber views. Inspection of Figure 2 confirms that
visually these categories are among the most similar.

Dermoscopy disease recognition
In the following subsections, we review experiments
performed on the two dermatology datasets described in
the section BDermoscopy disease datasets.[

Figure 4

Example visual retrieval results from the Broad Domain Medical image dataset.
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PH2 dataset
Because of the extreme scarcity of exemplars in the PH2
dataset, ensemble strategies are not effective, as not enough
data is present to perform both unit model training and
ensemble fusion. Therefore, we used a variant of IMARS
that trains a single unit model with early fusions of features.
2-fold cross validation is still used for logistic score fitting
in order to address data imbalance. Evaluations are
carried out in accordance with prior literature, utilizing a
leave-one-out strategy: one example is left out of training,
while models are trained on the remaining data and used
to make a judgment of the sample left out. This is repeated
until all samples have been left out.
Our experimental approach was to start with a simple

feature to describe color, and iteratively add features that
better describe texture, or interactions between color and
texture. We expected to see an improvement in performance
as additional image statistics are involved in the training
process, until the feature combinations become of sufficiently
high dimension that overfitting starts to occur. Indeed, this
is the pattern that our experiments show; however, before
saturation occurs, state-of-art performance was obtained.
In total, we performed four experiments. In the first, we

utilized the color histogram feature at global granularity.
Resultant sensitivity and specificity is 0.675 and 0.9062,
respectively, with an average precision (AP) at full depth
of 0.743. In the second, we concatenated color and edge

histograms at global granularities. Performance improved to
0.8 and 0.9375 sensitivity and specificity, respectively, with
an average precision at full depth of 0.88. In the third, we
concatenated color, edge, and color LBP histograms (59 bins),
all at global granularities. Performance capped at 0.9 and
0.9 sensitivity and specificity, respectively, with an average
precision of 0.927. Using a threshold where sensitivity
is fixed to a value of 0.93 as reported in prior literature,
this result improves state-of-art by 4% in specificity
(0.88 specificity versus 0.84 in prior reports [22]).
In the fourth and final experiment, we continued to

concatenate additional features, including both Bimage
type[ and Bimage stats[ feature vectors [3]. These features
measure global image statistics, such as mean saturation, hue
entropy, variance and switches, quantized color entropy and
switches, variance, minimum value, maximum value, mean,
median, standard deviation, central moments, average energy
of the first level of 2D wavelet decomposition subbands,
skin color, and number of unique colors in quantized color
space. However, we found performance to decrease, likely
due to overfitting of the small dataset from the feature vector
becoming too large. Sensitivity and specificity reduced to
0.9 and 0.888, respectively, and AP fell to 0.922.

ISIC dataset
As the ISIC dataset is an order of magnitude larger than
the PH2 data, we changed back to the ensemble modeling

Figure 5

Top-scoring example retrieval results for disease state BPneumothorax[ (lung collapse) for the CT imaging modality. One can clearly identify the
collapsed left lung in the images (chest cavity on right side of image with black air gap as a result of the lung collapse).
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Table 7 Full accounting of Broad Domain Medical 158 concept categories, the number of positive exemplars per
category, and the AP evaluated at full recall on the 20% held-out test set.
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Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive
exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.

1 : 12 M. ABEDINI ET AL. IBM J. RES. & DEV. VOL. 59 NO. 2/3 PAPER 1 MARCH/MAY 2015



Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive
exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.
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algorithm. For our experiments, we studied two variants of
the ISIC dataset. The first includes data from lesions that are
clearly benign, and the second excludes data from clearly
benign lesions, which may result in a more difficult task. For
both experiments, 80% of data was used for training, and
20% was used to test the algorithm.
Experiments with clearly benign lesions involved

391 images of melanoma, 225 images of atypical lesions,
and 2,536 clearly benign lesions. Resultant AP at full depth
was 0.967. At the cutoff threshold of 0.5 (logistically
normalized SVM scores), we measured a sensitivity of
0.987 and specificity of 0.9482. At threshold with fixed
sensitivity values of 0.99, the experiment yields a specificity
value of 0.9445.
Excluding clearly benign lesions (391 melanoma,

225 atypical), resultant AP at full depth was 0.983. At the
cutoff threshold, trained models produced a sensitivity of
0.846 and a specificity of 0.9375. At a threshold with fixed
sensitivity values of 0.99, the experiment yielded a specificity
value 0.594.
Table 5 shows the average precision of our low-level

features on the Validation partition of the ISIC dataset
including clearly benign lesions (feature types and
granularities are as specified in the section BVisual modeling
approach[). Table 6 presents the same analysis for the dataset
excluding benign lesions. LBP features have specified the
standard square size that images are rescaled to 320 � 320 or
512 � 512, the color channels (gray, Red, Green, Blue, Hue,

Saturation), and the number of bins in the histogram (59 or
256). Granularities are appended to the end (see the section
BVisual modeling approach[). For review, Bglobal[ is simply
feature extracted from the whole image (1 � 1). BPyramid[
is whole image (1 � 1) concatenated with quarters (2 � 2).
BPyramid23[ is whole image (1 � 1) concatenated with
quarters (2 � 2), concatenated with ninths (3 � 3).
Clearly, color LBP features dominate. Using 256 bins as

opposed to 59 bins appears to yield no benefit. Additional
pyramid levels add marginal benefit. Increasing resolution of
image rescaling before feature extraction brings improved
performance.
To demonstrate the importance of the ensemble fusion

involving multiple features, we re-ran the experiment
excluding clearly benign lesions with the single top
performing feature in that scenario. Resultant threshold
sensitivity was 0.872, with a specificity of 0.901. At a
threshold with sensitivity of 0.99, specificity is reduced
to 0.438.

Broad domain medical image recognition
In our broad domain medical image recognition experiments,
we trained 158 one-vs-all classifiers for each of the categories
in the dataset. The size of the data subsamples, or Bbags,[
for each feature were up to 5,000 positive exemplars and
5,000 negative examples, and 10 bags per feature to cover the
entire data space. Evaluation is carried out on the held-out
20% dataset.

Table 7 (Continued.) Full accounting of Broad Domain Medical 158 concept categories, the number of positive
exemplars per category, and the AP evaluated at full recall on the 20% held-out test set.
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Given that concepts are defined in a hierarchical fashion,
positive and negative exemplars may be sampled from one or
more concepts in the dataset (children or siblings/cousins).
We employed two strategies of sampling data across multiple
concepts in these scenarios: 1) concept proportions in the
data subsample equals proportions seen in the training data
and 2) concept proportions in the data subsample is equalized
so that each category receives as equal a representation as
possible, while still filling the bag.
Example visual retrieval results are depicted in Figure 4.

More detailed results for an example disease state,
pneumothorax, within the BCT[ modality and BChest[ body
region are shown in Figure 5. In summary, the ensemble
model strategy using the second equal representation
sampling yielded the highest mean average precision (MAP)
of 0.792, slightly above the first sampling strategy, which
yielded an MAP of 0.785. Average accuracy was 0.984,
with an average sensitivity of 0.947 and specificity of 0.984.
Correlating concept classifier performance, in terms of AP,
with the tree-depth of the concept in the hierarchy yielded
no significant correlation ðR2 ¼ 0:024Þ, suggesting the
general to specific ordering of concepts was not predictive of
resultant classifier quality. Individual classifier performance
metrics for each category can be found in the Appendix.
In total, this task required training over 26,000 SVMs

(over 78,000 counting cross-fold validation) and learning
158 ensembles. Utilizing our hardware resources (see
the section BVisual modeling approach[), training took
9.5 hours. Once features are pre-extracted, scoring the models
on the test set (8,000 images) took 12 minutes on 700 cores.
This translates to 0.4 seconds per instance, per classifier,
per core. Feature extraction required just under an additional
2.5 seconds per core, yielding a total evaluation time of
approximately 3 seconds per image, per classifier, per core.
Clearly, the ability to arbitrarily scale to 700 cores made

the large-scale experiment feasible. On a single core, the
same experiment would have taken over 290 days to train
and 6 days to evaluate.
Scaling our experiment even further, we studied how

performance might be improved if we optimized SVM kernel
selection for each unit model trained. For this experiment,
four kernels were trained for each unit model, and the best
performing selected for use. The four kernels spanned
histogram intersection and chi-squared kernels, with varying
values of misclassification costs. Resultant MAP increased to
0.801, from 0.792, an improvement of approximately 1%.
Since optimizing over four kernels required training four
times as many SMVs (over 100,000), the cost/benefit ratio is
clearly very high in comparison to using a single SVM kernel.

Conclusion
We presented a flexible and scalable modeling system for
recognition of medical image categories. Performance
was evaluated in the following four contexts: 1) modality,

2) echocardiography view and mode, 3) melanoma, and
4) broad medical domain categories. In the first context, our
system achieved state-of-art performance of 82.2% on the
public ImageCLEF 2013 benchmark dataset. In the second,
the system achieved performance of 90.48% multiclass
accuracy. In the third, we achieved state-of-art performance
on a small public benchmark dataset of 200 images and
demonstrated an ability to generalize to a larger dataset
obtained through collaboration with the ISIC. In the fourth
and last context, we studied the system’s ability to scale to

Table 8 List of acronyms for the Broad Domain
Medical dataset.
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158 medical concepts covering broad and specific categories
of modality, body region, view point, and disease. Resultant
performance yielded average sensitivity and specificity of
0.95 and 0.98, respectively.
In summary, the proposed ensemble visual modeling

system has been shown to be an effective tool for a broad
range of medical image categories. Further research is
warranted to study combining the framework with libraries
of more specialized techniques and algorithms targeted for
finely detailed local analysis and quantitative measurements
in specific modalities, body regions, and views, which
have the potential to improve the ability to extract relevant
evidence to support the diagnosis of more disease states.

Appendix I: Broad domain 158 categories
The categories of our curated dataset, and the number of
instances contained within each, are displayed in Table 7.
The full path in the hierarchy is designated with underscores,
which indicate a new branch. Abbreviations are outlined
in Table 8.

**Trademark, service mark, or registered trademark of National Library
of Medicine, MELA Sciences, Apache Software Foundation in the
United States, other countries, or both.
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