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Abstract—Biomarkers are fundamental for improving early
diagnosis, monitoring treatment response, and deepening our
understanding of disease mechanisms. The lack of effective
biomarkers is particularly detrimental in diseases like amy-
otrophic lateral sclerosis (ALS), where delays in diagnosis can
span 12-18 months, significantly affecting conditions marked by
rapid disability progression and reduced lifespan. In this work,
we analyzed recordings from 291 participants, including 135 peo-
ple with ALS (pALS), who performed nine different speech tasks
during each session, totaling 6,276 sessions. These recordings
were processed using OpenSMILE to extract acoustic features,
which were input into three classifiers. We aimed to discriminate
pALS from controls and identify different stages of ALS (bulbar
manifest and bulbar pre-manifest). We achieved an Area Under
the Curve (AUC) of up to 66% (with a recall rate of 79%)
and up to 90% (with a recall rate of 91%) for discriminating
pre-manifest and manifest ALS from controls, respectively. This
work represents a significant step toward identifying reliable
biomarkers for ALS, offering new insights into early detection
and a better understanding of disease progression.

Index Terms—ALS, Amyotrophic Lateral Sclerosis, Digital
Health, biomarkers, large data set, speech

I. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a complex neurode-
generative condition that primarily targets the upper and lower

motor neurons responsible for voluntary muscle movement.
The onset of the disease is marked by symptoms such as limb
weakness and muscle spasms, which progress to severe muscle
wasting, paralysis, and respiratory failure, typically within 2-4
years of diagnosis [1]–[4].

In clinical settings, ALS is classified based on the family
history into either familial or sporadic (no history of ALS in
the family) types. Classification is also conducted based on the
onset of symptoms into limb (primarily affecting the extrem-
ities), axial (with the trunk and neck being the initial sites),
bulbar (where speech and swallowing are the primary affected
functions), or cognitive (where frontotemporal dementia and
ALS present concurrently). It is not uncommon for pALS
to present with multiple symptoms at the point of diagnosis,
with additional symptoms emerging as the disease progresses.
For example, although 30% of pALS initially display bulbar
symptoms, dysarthria is estimated to manifest in over 80% of
pALS [5].

The Functional Rating Scale-revised (ALSFRS-R) scale [6]
is a widely adopted instrument for assessing functional status
and disease progression in pALS. The scale is designed to
provide a snapshot of a pALS’s current abilities in various
activities of daily living. It consists of 12 questions that
evaluate four functional domains: bulbar (speech, salivation,



swallowing), fine motor (handwriting, cutting food and han-
dling utensils, dressing and hygiene), gross motor (turning in
bed and adjusting bed clothes, walking, climbing stairs), and
respiratory (dyspnea, orthopnea, respiratory insufficiency). For
each question, pALS are given five alternatives to select from
normal function (score=4) to inability to perform or total loss
of function (score=0). Therefore, the total score (adding the
partial scores of the 12 questions) can range from 0 (most
impaired) to 48 (least impaired). Given our focus on analyzing
speech degradation, we used the bulbar domain total score to
identify two sub-cohorts in pALS. When pALS have a 12/12
score in the bulbar domain (i.e., normal function), we call them
bulbar pre-manifest; otherwise, we call them bulbar manifest.

Researchers have recently focused on detecting pALS from
controls based on characterizing speech in specific speech
tasks. For example, in [7], the authors analyzed the acoustic
components, specifically jitter, and shimmer, in audio record-
ings of pALS performing a sustained vowel speech task.
High accuracy is reported in discriminating between pALS
(31) and healthy controls (34). In [8], the focus was on
analyzing sustained vowel data by characterizing the harmonic
structure of the vowels. Although the participants performed
only one speech task, multiple recordings were obtained per
participant. By incorporating more complex speech tasks such
as reading sentences, along with the TSFEL library [9] and
Praat software [10] for audio processing, the authors in [11]
achieved high accuracy in discriminating pALS from controls.
In [12], authors used a machine learning (ML) approach with
speech samples from 123 participants reading the following
sentence: “Bamboo walls are getting to be very popular” (one
sample per participant). Researchers obtained high AUC per-
formance (greater than 91%) by stratifying sex and ALS status
(control:36, symptomatic:51, and presymptomatic:36). In a
more recent approach, authors in [13] analyzed the readings
from the bamboo passage, acquired through the Winterlight’s
remote assessment system, using a sparse Bayesian logistic
regression classifier achieving AUC of 85% for discriminating
pALS (122) from controls (22). Furthermore, it was possible to
distinguish bulbar pre-manifest (normal function in the bulbar
area) from bulbar manifest with AUC=70%.

Results in the literature are encouraging, but further evalu-
ation is needed on using speech for remote pALS monitoring.
For example, the authors in [11] achieved good results but
the datasets HomeSenseALS and Minsk used in the analysis
contain few participants (less than 50 pALS) or lack of
controls (e.g. 15% of controls in [13]), and a reduced set
of speech tasks; besides some recordings were captured in
a controlled environment (e.g., experiments were performed
in the lab or use professional microphones). Additionally,
many of these previous studies only contained one recording
per participant reducing the inherent variability of human’s
speech which does not allow to create a model that could be
generalizable.

In this study, we overcome these limitations by examining
the EverythingALS dataset collected from 291 participants.
This includes 135 pALS who completed nine speech tasks

during sessions conducted at home. These sessions extended
up to more than two years for some participants. We extracted
acoustic features using the standard OpenSMILE [14] toolbox
to discriminate between pALS vs. control, bulbar manifest vs.
bulbar pre-manifest, and bulbar pre-manifest vs. control (early
detection).

II. DATA COLLECTION

A. Participants

Participants were recruited by the EverythingALS or-
ganization (an active ALS community detailed on http:
//www.everythingals.org), through web advertisements in
clinicaltrials.gov, and from flyers that were distributed to
specific Neurology clinics. All participants signed an informed
consent. In this study, individuals from two populations were
recruited: a) individuals diagnosed with ALS or probable ALS
and b) individuals with no diagnosis of ALS (non-ALS group).
For both groups, the inclusion criteria require that participants
must be aged 18 or older, be capable of independently operat-
ing a smartphone/tablet/device or PC/laptop, and demonstrate
proficiency in reading and speaking English. Participants were
further screened to exclude those deemed by the investigator
as unable to comply with the study procedure. For the non-
ALS group, the inclusion criteria was not having an ALS
diagnosis. More details about this study can be found in [15]
In what follows, the ALS and non-ALS groups are referred
to as the pALS and control groups, respectively. Data used in
this analysis was acquired from November 3, 2020, to May
31st, 2023.

B. Protocol

Data from all the participants were collected using the
modality.ai platform, a tool designed for the remote evaluation
and continuous monitoring of participants. This allows the in-
volvement of participants in weekly verbal exercises, including
sustained vowel sounds, reading assignments, diadochokinetic
(DDK) rate evaluations, and expressive speech tasks through
picture description (PD). To minimize learning biases, the
content for the speech tasks, including both sentences and
images, was randomly chosen from a pool containing at least
15 sentences per category and 23 unique images. Participants
were encouraged to complete the ALSFRS-R scoring form bi-
monthly after each session.

III. AUDIO DATA ANALYSIS

A. Feature Extraction

Speech recordings were processed independently by each
task to extract acoustic components using the OpenSMILE
open source toolbox [14]. We used the Geneva Minimalistic
Acoustic Parameter Set (GeMAPS v2.0) [16], consisting of 80
features derived from 18 functionals. This set provides basic
acoustic information reflecting physiological changes in voice
production. In addition to these features, we have included the
duration of the nine tasks in each session.
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TABLE I
Demographic and Clinical Characteristics of Study Participants. DISTRIBUTION OF SEX, AGE, RACE, ETHNICITY, AND ALS-SPECIFIC CLINICAL

MEASURES AMONG ALL PARTICIPANTS, FURTHER CATEGORIZED INTO THE PALS AND CONTROL GROUPS. VALUES IN ALL THE TABLES ARE EXPRESSED
AS MEDIAN (Q1, Q3).

Category Variable All ALS Control

Demographics Participants 291 (100%) 135 (46%) 156 (54%)
Age (years) at baseline 64 (54, 70) 65 (57, 71) 62 (53, 68)
Education (in years) 17 (16, 18) 17 (16, 18) 17 (16, 18)
Sex: Female 173 (59%) 67 (50%) 106 (68%)

Male 118 (41%) 68 (50%) 50 (32%)
Race: Caucasian 264 (91%) 123 (91%) 141 (90%)

African American 4 (1%) 2 (1%) 2 (1%)
American Indian 6 (2%) 3 (2%) 3 (2%)
Asian 13 (5%) 5 (4%) 8 (5%)
Non Reported 4 (1%) 2 (1%) 2 (1%)

Ethnicity: Not Hispanic 272 (93%) 127 (94%) 145 (93%)
Hispanic 14 (5%) 5 (4%) 9 (6%)
Non Reported 5 (2%) 3 (2%) 2 (1%)

First Language: English 276 (95%) 129 (96%) 147 (94%)
Other 15 (5%) 6 (4%) 9 (6%)

ALS-specific Age (years) at symptom onset 61 (53, 67)
metrics Months between symptom

onset and diagnosis 12 (8, 21)
Months between symptom

onset and study enrollment 34 (18, 56)
Familial/Sporadic type 47 (35%) / 88 (65%)
Bulbar/Non-bulbar onset 31 (25.2%) / 101 (74.8%)
Condition: Pre-Manifest 74

Manifest 41
Pre- to Manifest1 20

ALSFRS-R Total score at baseline 36.3 (7.2)
assessment slope2 -0.40 (0.48)

Bulbar score at baseline 10.4 (1.8)
slope2 -0.08 (0.23)

Speech score at baseline 3.4 (0.8)
slope2 -0.03 (0.08)

1Number of pALS that were initially Pre-manifest (bulbar score=12) and transitioned to Manifest (bulbar score < 12) during the study.
2Only participants with more than three months of data were included.

B. Experimental Design

To evaluate the ability of these features to detect speech
deficiencies within pALS, the cohort was split into two groups
based on the sum of the three ALSFRS-R bulbar sub-scores
(speech, salivation, and swallowing): the pre-manifest group,
consisting of individuals with the maximum score (12), for
which there is no self-perceived speech deterioration, and the
pALS-manifest group, comprising individuals with signs of
speech impairment, evidenced by ALSFRS-R bulbar scores
below 12. Based on these ALS sub-cohorts, we define three
classification experiments.

First, we explored whether the acoustic features allow dis-
criminating pALS manifest (pALS with speech deterioration)
from controls. Second, we aimed to detect the progression
of the disease by distinguishing between pALS manifest and
pALS pre-manifest. Finally, the most challenging task was
to test the potential of the acoustic features to detect early
speech deterioration by segregating pALS pre-manifest from
control participants. Taking advantage of the multiplicity of
sessions per participant within the EverythingALS dataset, we
approached the classification tasks in two ways: (1) using
a feature vector per task and (2) using a feature vector per

participant, thus averaging over all the participant’s sessions.

C. Classification experiments

We tested three different classification algorithms on top
of the acoustic features. 1) Extreme gradient boosting (XG-
boost) [17], one of the most popular classification algo-
rithms for structured data, which implements a scalable dis-
tributed gradient-boosted decision tree specifically designed
to minimize bias and underfitting. We used the following
standard model parameters: learning rate = 0.3, γ = 0,
max depth = 6 and min child weight = 1. 2) Light
gradient boost machine (LGBM) [18], a gradient boosting tree
algorithm similar to XGBoost, growing in a leaf-wise fashion
instead of a tree level-wise way, thus increasing training
efficiency. We used the following standard model parameters:
learning rate = 0.1, num leaves = 31, max depth = −1
(unlimited), n estimators = 100 and min child weight =
1e−3. 3) Support vector machine (SVM) with χ2 kernel
[19], which is a classifier designed to maximize the margin
between classes using representative samples (support vectors)
in the training data. SVMs can be used with various kernels
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(linear, RBF, etc.). Still, we adopted the χ2 one since it has
proven very effective for classification experiments, especially
with features vectors of reduced dimensionality [19]. We
used the following standard model parameters: C = 1 and
γ = 1/[numf var(X)], where numf is the number of
features and var(X) is their variance over the training set.

Features were normalized using min-max normalization
before being passed to each classifier, and additional L2
normalization was used for χ2 SVM. For every classification
experiment and session task, the data was split using 10-
fold cross-validation to avoid bias. Furthermore, we explicitly
balanced the number of examples in each class within the
train and test sets for every fold by down-sampling the
overrepresented class, which resulted in an almost perfect
balance in the number of individuals. Evaluating results on an
unbalanced dataset would result in values that do not reflect
the real predictive power of the features on metrics such as
accuracy or area under the ROC curve (AUC). During training,
the data was also sampled to maintain the balance between
classes as much as possible and build classifiers without biases
toward any class due to data imbalance. Finally, in addition to
evaluating the performance of our models, we also assessed
their most relevant features by examining their respective
weights.

IV. RESULTS

A. Data Collection

Demographics and enrollment information
Table I presents demographics for all participants in the
reported period, totaling 291 participants. Of these, 46% (135)
were in the pALS group and 54% (156) were in the non-pALS
(control) group. Among the pALS, 47 (35%) had familial ALS.

The sex distribution within the pALS was nearly even, with
68 males and 67 females. The control group had a significantly
higher female representation at 68%. This disparity is statisti-
cally significant (χ2 test, p-value=0.002). Age differences were
also observed, with the control group’s median age at baseline
at 62 and the pALS group at 65 years (Mann Whitney U
test, p-value=0.007). Although the medians and interquartile
range for education years are the same, the difference between
the distributions was statistically significant (Mann Whitney U
test, p-value=0.02). The differences between groups were not
statistically significant for the remaining variables described
in Table I. Specifically for pALS, the time between symptom
onset and study enrollment has a median of 34 months.
In addition, we observed that 20 out of 94 individuals of
the pALS cohort that initially were pre-manifest (ALSFRS-
R bulbar total score 12) transitioned to manifest (ALSFRS-R
bulbar total score less than 12).

Task Duration
Table II shows the median duration per task for all participants
and by cohort. Individuals in the pALS group took more
time to complete almost all the speech tasks than those in

TABLE II
DURATION IN SECONDS OF EACH SPEECH TASK FOR EACH COHORT

Variable pALS Control

SIL 5 words 5.5 (5.0, 6.5) 5.2 (4.8, 5.6)
SIL 7 words 5.9 (5.3, 7.1) 5.5 (5.1, 6.1)
SIL 9 words 6.7 (6.0, 8.2) 6.2 (5.7, 6.8)
SIL 11 words 7.9 (6.9, 9.7) 7.2 (6.6, 7.9)
SIL 13 words 8.6 (7.5, 10.8) 7.7 (7.1, 8.5)
SIL 15 words 8.9 (7.8, 11.3) 8.1 (7.5, 8.8)
DDK 18.8 (14.2, 24.1) 19.5 (15.3, 24.6)
Bamboo passage 38.6 (33.4, 51.5) 34.5 (32.0, 37.4)
Picture Description 63.3 (49.8, 67.2) 64.2 (55.9, 67.3)

the control group. The exceptions were the DDK and PD
tasks, where the median for controls was slightly higher than
for pALS. All these differences were statistically significant,
being the reading tasks the ones with higher discrimination
(lower p-values) between groups and the DDK task the one
with the lowest discrimination (Mann-Whitney U test, p-value
< 0.001). Then, we evaluated whether task duration was
also affected for pre-manifest individuals, given their absence
of evident speech deterioration. To this end, we subdivided
the pALS group into manifest and pre-manifest categories
(Figure 1). We found that the difference in task duration across
speech tasks between controls and pALS pre-manifest was
considerably less than between controls and pALS manifest,
as expected. Notably, controls were slower than pALS on
DDK and PD tasks. Specifically, in comparing controls and
pALS manifest, the difference was significant across all nine
tasks using a two-sided test. Conversely, in comparing controls
to pALS pre-manifest, significance was achieved in only five
tasks (SIL-9, SIL-11, and SIL-15, with p-values < 0.01; and
Bamboo passage and PD with p-values < 0.001).

B. Classification Results

The best performance models for all the classification tasks
are shown in Tables III and IV. Performance is higher for
features analyzed per participant than per session, with a
maximum difference of 11% for SIL-15 words between pALS
and controls. Prediction per participant is computed as the
median score over the sessions for each participant. Unsur-
prisingly, the best performance models are obtained when
comparing pALS with advanced stages of the disease and
controls (pALS manifest vs. controls, AUC > 89.5%). On
the other hand, the worst performance models are associated
with discriminating pALS pre-manifest from the control cohort
(AUC up to 65.9%). Although the differences between speech
tasks in the same model (per session and participant) are not
statistically significant, models using features derived from
DDK perform slightly better than the rest, followed by the
task picture description, with the lowest performance model
for SIL-7 words. To complement these results, we selected
the top features before an inflection point based on weight for
each classification experiment and speech task. For most tasks
and experiments, the number of features before an inflection
point (by sorted weights) is two or three. Results shown in
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Fig. 1. Duration of the speech tasks. The labels of the sentences of
increasing length (SIL) are followed by the number of words in each. The
other speech tasks consist of the repetition of syllables puh-tuh-kuh (DDK),
the reading of the paragraph known as Bamboo Passage (Bamboo), and a
picture description (PD). Duration is expressed in a log scale.

Figure 2 indicate that task duration is one of the most frequent
features. Another relevant feature in terms of weight in the
classifiers and frequency of appearance for the different speech
tasks is the Loudness peak rate (called LoudnesSpeakPerSec
in the OpenSMILE feature set), especially for the experiments
including pALS-manifest as one of the cohorts to discriminate.
This feature, a rate of loudness peaks in the participant’s
speech, can be interpreted as detecting the speech intensity
rate. For the experiment pALS pre-manifest vs. controls,
the features derived from Mel-frequency cepstral coefficients
(MFCCs) are the most relevant. Finally, as the experiment
becomes more complex (e.g., pALS pre-manifest vs. control),
each speech task’s most relevant features are different. For
example, when comparing the top 3 features used in the
models for all speech tasks (Figure 2), we found there are 23
features for pALS pre-manifest vs. control (a most challenging
task). In comparison, there are only seven features for pALS
manifest vs. control (a less difficult task), meaning there is
good agreement among models.

V. DISCUSSION

We achieved high-performance results in discriminating
between pALS manifest and pre-manifest, with AUC up to
90.2%. This outcome is particularly encouraging, considering
that 20 subjects in our dataset transitioned from pre-manifest
to manifest status, introducing samples into both groups and
thereby increasing the complexity of discrimination. We no-
ticed that some tasks, such as DDK, Bamboo passage, and PD,
performed better than SIL tasks. A contributing factor could
be the duration of the tasks, meaning that longer tasks may
allow the extraction of more robust features.

When discriminating controls from all pALS, including
individuals with unaffected speech, we achieved AUC values
ranging from 78% to 83% at the participant level and slightly
lower values (67 % to 74 %) when discriminating based on
individual sessions. These results hold up well when compared
with those published in previous studies [12], [13], [20]–[22].

Another interesting finding was task duration, a non-direct
acoustic property (features extracted in the analysis) of speech.
As demonstrated in Figure 1, there is a systematic increase in
the duration of the reading tasks for the pALS manifest cohort
with respect to the pALS pre-manifest and control cohorts.
This suggests that speech becomes slower for the pALS
manifest group, which requires more time to complete the
reading tasks. A different pattern is observed for the other two
types of speech tasks, where controls use more time to finish
tasks than pALS. In the DDK task, where participants were
instructed to repeat the syllables puh-tuh-kuh until running out
of breath, this pattern could indirectly reflect diminished lung
capacity in pALS. Also, challenges associated with a more
difficult task, such as picture description, may contribute to
the discrepancy found for this task, with a median duration
exceeding one minute. The cognitive load imposed by the
PD task must also be considered. Furthermore, although the
difference in median duration narrows when comparing pre-
manifest pALS to controls, statistical analyses reveal distinct
distributions for 5 out of the nine speech tasks. This suggests
that task duration could also contribute to identifying early
pALS cases. Not surprisingly, when we look at the weight
analysis (see Figure 2), we notice that features about task
duration and loudness peaks rate (rate of speech intensity
peaks) are the most relevant ones, appearing in at least 6
out of 9 speech tasks in the three different classification
experiments mentioned above. These features can be seen as
proxies for measuring speech rate, which is a key feature for
characterizing ALS and has consistently been found in other
studies [23]–[26].

The dataset used for analyzing pALS offers unique op-
portunities for in-depth understanding and innovation, distin-
guishing it from other datasets. Specifically, the progression
rate in our pALS cohort, characterized by a mean decline
of ALSFRS-R total score of -0.40, indicates that our cohort
predominantly consists of slow progressors. This classification
aligns with the progression rate categories defined by Labra
et al. [27], with gradients below -1.11 for fast progressors,
between -1.11 and -0.47 for intermediate progressors, and slow
progressors with gradients exceeding -0.47. Additionally, the
mean ALSFRS-R total score of 36.3 at baseline in our pALS
cohort suggests a significant representation of individuals at
early stages of the disease at the time of recruitment [26],
[28]. These characteristics notably increase the challenge of
discriminating between pALS pre-manifest and controls in the
context of early diagnosis. Particularly, our results for this
experiment (pALS pre-manifest and controls) indicate that the
most predictive features were related to loudness, shimmer,
and formants (F1, F2, F3) across the models. Furthermore,
there is less consensus on the relevant features across different
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TABLE III
CLASSIFICATION RESULTS PER SESSION. PERFORMANCE IS EVALUATED USING PRECISION, RECALL, F1-SCORE, AUC, AND ACCURACY (MEAN ± STD)

FOR EACH SPEECH TASK AND CLASSIFICATION EXPERIMENT. ONLY THE CLASSIFIER WITH THE BEST PERFORMANCE WAS DISPLAYED AND INDICATED IN
THE LAST COLUMN. THE TASKS CORRESPONDING TO READING SENTENCES ON INCREASING LENGTH (SIL) ARE FOLLOWED BY THE NUMBER OF WORDS

IN EACH.

Experiment Speech Task Precision Recall F1 AUC Accuracy Best Classifier
Picture 64.6 ± 6.2 67.8 ± 8.7 65.6 ± 4.3 73.0 ± 5.9 64.7 ± 4.3 SVM

SIL 5words 63.6 ± 8.6 65.4 ± 8.4 64.4 ± 8.0 69.5 ± 10.4 63.8 ± 8.5 SVM
SIL 7words 60.3 ± 4.3 64.9 ± 8.4 62.2 ± 4.6 66.7 ± 6.1 60.8 ± 4.3 SVM

ALS SIL 9words 62.6 ± 8.2 65.5 ± 10.6 63.6 ± 7.7 69.3 ± 9.4 62.7 ± 7.8 SVM
vs. SIL 11words 64.3 ± 7.5 62.1 ± 11.3 62.7 ± 7.9 70.7 ± 7.3 63.6 ± 6.3 LGBM

Control SIL 13words 64.4 ± 6.5 65.3 ± 7.4 64.5 ± 4.9 70.9 ± 8.1 64.1 ± 5.4 SVM
SIL 15words 65.0 ± 8.4 65.5 ± 14.2 64.6 ± 9.5 71.6 ± 8.7 64.9 ± 7.8 SVM

Bamboo passage 67.9 ± 12.4 70.9 ± 9.1 68.6 ± 8.1 72.8 ± 11.4 67.0 ± 10.3 SVM
DDK 69.4 ± 8.2 73.3 ± 6.7 70.9 ± 5.4 73.9 ± 9.7 69.8 ± 6.6 SVM

Picture 83.1 ± 11.5 77.5 ± 13.5 79.7 ± 11.2 84.9 ± 12.7 77.2 ± 11.1 SVM
SIL 5words 84.1 ± 12.1 72.8 ± 14.1 77.8 ± 12.9 84.0 ± 10.0 76.5 ± 9.4 LGBM
SIL 7words 79.5 ± 11.0 73.9 ± 13.0 76.2 ± 10.9 79.9 ± 13.6 73.6 ± 8.8 LGBM

Pre-manifest SIL 9words 87.1 ± 9.4 75.7 ± 14.2 80.5 ± 11.2 85.6 ± 12.0 78.7 ± 10.7 LGBM
vs. SIL 11words 86.2 ± 9.6 81.2 ± 14.5 83.1 ± 11.2 84.0 ± 16.2 79.5 ± 13.2 LGBM

Manifest SIL 13words 86.4 ± 10.5 79.7 ± 12.5 82.4 ± 10.0 77.9 ± 20.8 79.1 ± 12.1 LGBM
SIL 15words 85.9 ± 10.9 77.9 ± 10.2 81.3 ± 9.2 87.2 ± 11.7 79.3 ± 8.6 LGBM

Bamboo passage 88.9 ± 11.1 83.6 ± 12.0 85.1 ± 8.0 86.8 ± 14.9 81.9 ± 10.1 LGBM
DDK 88.3 ± 11.5 81.8 ± 18.7 83.8 ± 13.5 90.1 ± 11.4 81.8 ± 14.0 XGBoost

Picture 51.9 ± 5.6 72.4 ± 14.3 60.1 ± 8.0 57.8 ± 10.2 52.8 ± 6.8 LGBM
SIL 5words 51.5 ± 7.2 59.2 ± 13.7 54.7 ± 9.2 54.2 ± 12.5 51.9 ± 8.4 LGBM
SIL 7words 50.8 ± 8.5 61.1 ± 14.3 55.0 ± 10.2 52.0 ± 13.0 51.0 ± 9.3 LGBM

Pre-manifest SIL 9words 50.0 ± 8.7 61.3 ± 15.7 54.5 ± 11.1 49.9 ± 14.9 50.2 ± 9.6 SVM
vs. SIL 11words 51.2 ± 8.7 62.0 ± 12.7 55.7 ± 9.4 51.4 ± 14.2 50.9 ± 10.7 SVM

Control SIL 13words 50.5 ± 6.1 63.4 ± 8.7 55.8 ± 5.1 50.7 ± 12.8 49.8 ± 7.4 LGBM
SIL 15words 52.8 ± 5.6 64.6 ± 12.7 57.3 ± 7.0 53.8 ± 12.0 52.8 ± 6.9 XGBoost

Bamboo passage 51.3 ± 9.3 73.1 ± 15.9 60.1 ± 11.4 52.9 ± 17.8 52.1 ± 12.3 XGBoost
DDK 53.4 ± 6.3 71.4 ± 11.6 60.5 ± 5.8 54.0 ± 11.6 53.7 ± 7.2 XGBoost

TABLE IV
CLASSIFICATION RESULTS PER SUBJECT. PERFORMANCE IS EVALUATED USING PRECISION, RECALL, F1-SCORE, AUC, AND ACCURACY (MEAN ± STD)

FOR EACH SPEECH TASK AND CLASSIFICATION EXPERIMENT. ONLY THE CLASSIFIER WITH THE BEST PERFORMANCE WAS DISPLAYED AND INDICATED IN
THE LAST COLUMN. THE TASKS CORRESPONDING TO READING SENTENCES ON INCREASING LENGTH (SIL) ARE FOLLOWED BY THE NUMBER OF WORDS

IN EACH.

Experiment Speech Task Precision Recall F1 AUC Accuracy Best Classifier
Picture 70.4 ± 9.4 76.4 ± 12.7 72.8 ± 9.3 80.1 ± 9.7 71.8 ± 9.6 SVM

SIL 5words 71.2 ± 5.4 83.5 ± 10.3 76.3 ± 4.8 80.9 ± 7.8 74.4 ± 4.6 SVM
SIL 7words 66.1 ± 9.3 72.7 ± 10.0 68.7 ± 7.0 78.0 ± 7.1 66.9 ± 8.1 LGBM

ALS SIL 9words 68.0 ± 8.0 75.9 ± 8.3 71.5 ± 7.2 80.0 ± 7.4 69.7 ± 8.0 SVM
vs. SIL 11words 66.3 ± 6.4 77.4 ± 12.0 71.1 ± 7.5 79.3 ± 5.5 69.0 ± 7.2 SVM

Control SIL 13words 71.4 ± 8.0 73.9 ± 9.0 72.2 ± 6.4 80.6 ± 7.9 71.6 ± 6.9 LGBM
SIL 15words 74.3 ± 11.3 76.1 ± 14.5 74.1 ± 9.2 83.2 ± 6.7 73.9 ± 9.1 SVM

Bamboo passage 72.8 ± 7.2 76.5 ± 13.2 73.7 ± 7.7 81.4 ± 6.5 73.3 ± 6.4 SVM
DDK 75.8 ± 9.4 81.3 ± 6.0 78.1 ± 6.0 81.5 ± 9.8 76.9 ± 7.3 SVM

Picture 85.4 ± 12.5 81.6 ± 13.5 82.5 ± 9.1 88.2 ± 9.6 83.6 ± 8.7 SVM
SIL 5words 80.4 ± 19.8 91.0 ± 11.1 83.3 ± 12.4 90.2 ± 8.5 82.3 ± 13.5 SVM
SIL 7words 80.4 ± 16.5 78.0 ± 18.0 77.9 ± 14.2 85.0 ± 12.0 79.7 ± 8.3 XGBoost

Pre-manifest SIL 9words 82.2 ± 12.7 86.2 ± 12.4 83.2 ± 8.8 87.0 ± 11.7 82.9 ± 8.9 LGBM
vs. SIL 11words 78.5 ± 16.9 88.3 ± 13.4 82.4 ± 13.8 88.0 ± 13.6 83.2 ± 12.0 LGBM

Manifest SIL 13words 78.0 ± 17.6 86.5 ± 9.5 81.0 ± 11.9 84.4 ± 14.0 78.9 ± 13.8 LGBM
SIL 15words 76.8 ± 17.2 83.9 ± 11.7 78.9 ± 10.6 86.4 ± 8.79 79.0 ± 12.3 XGBoost

Bamboo passage 81.5 ± 17.8 80.7 ± 16.0 79.2 ± 11.8 86.2 ± 16.2 78.8 ± 12.1 LGBM
DDK 74.6 ± 17.5 82.3 ± 10.2 76.6 ± 10.1 88.4 ± 11.4 78.4 ± 8.3 XGBoost

Picture 51.9 ± 7.6 79.1 ± 16.6 62.4 ± 10.1 65.9 ± 15.0 53.2 ± 10.6 LGBM
SIL 5words 55.8 ± 14.4 68.2 ± 25.3 60.6 ± 18.4 62.3 ± 17.2 58.6 ± 15.1 SVM
SIL 7words 53.0 ± 14.0 71.7 ± 19.5 60.6 ± 15.3 55.6 ± 20.9 53.6 ± 17.8 LGBM

Pre-manifest SIL 9words 52.9 ± 18.1 68.0 ± 31.2 58.1 ± 21.8 54.1 ± 14.7 57.7 ± 12.1 XGBoost
vs. SIL 11words 52.1 ± 10.6 66.4 ± 17.4 57.7 ± 12.3 52.1 ± 17.9 52.0 ± 14.5 SVM

Control SIL 13words 56.8 ± 6.95 76.0 ± 11.8 64.1 ± 4.6 60.2 ± 12.5 57.8 ± 6.41 LGBM
SIL 15words 58.8 ± 11.8 71.1 ± 19.7 63.2 ± 13.7 63.8 ± 15.2 59.8 ± 14.0 LGBM

Bamboo passage 54.2 ± 13.4 79.1 ± 18.0 63.6 ± 13.9 57.3 ± 20.0 54.8 ± 16.7 LGBM
DDK 55.9 ± 10.2 76.2 ± 15.9 63.6 ± 9.1 58.4 ± 16.1 56.8 ± 10.6 LGBM

speech tasks, highlighting the complexity involved in this clas- sification experiment. According to the results summarized in
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Fig. 2. Frequent Features. Proportion of folds that have the top features. The top features are the ones before the first inflection point based on the weight
of the features for each speech task model using the SVM classifier. a)pALS manifest vs. control, b) pALS manifest vs pALS pre-manifest, and c)pALS
pre-manifest vs. control.

Table IV, the highest performance achieved for this experiment
had an AUC of 65.9% with a recall of 79.1% for the PD task
when classification was performed per subject. Although these
results did not reach statistical significance, they suggest that
tasks like PD, which assess both motor aspects of speech and
cognitive functions, could be particularly suitable in detecting
early manifestations in pALS individuals.

Finally, while our dataset includes a considerably higher
number of participants and speech samples than other studies,
we acknowledge the need for further validation. Future efforts
will broaden to analysis by sex and progression rate (i.e., slow,
intermediate, and fast) due to the potential variability in speech
degradation across these sub-cohorts, as suggested by previous
research [12]. Concurrently, we are advancing in extracting
features to overcome the limitations of pre-defined feature sets
from software packages like the one used in this study. These
initiatives aim to refine our understanding and detection of
speech deterioration in pALS, contributing valuable insights
into the complex nature of ALS progression and its diagnosis.
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[14] F. Eyben, M. Wöllmer, and B. W. Schuller, “Opensmile: the
munich versatile and fast open-source audio feature extractor.” in
ACM Multimedia, A. D. Bimbo, S.-F. Chang, and A. W. M.
Smeulders, Eds. ACM, 2010, pp. 1459–1462. [Online]. Available:
http://dblp.uni-trier.de/db/conf/mm/mm2010.html#EybenWS10

[15] I. N. Bingham, R. Norel, E. G. Roitberg, J. Peller, M. A.
Trevisan, C. Agurto, D. E. Shalom, F. Aguirre, I. Embon, A. Taitz,
D. Harris, A. Wright, K. Seaver, S. Sullivan, J. R. Green, L. W.
Ostrow, E. Fraenkel, and J. D. Berry, “Listener effort quantifies
clinically meaningful progression of dysarthria in people living with
amyotrophic lateral sclerosis,” medRxiv, 2024. [Online]. Available: https:
//www.medrxiv.org/content/early/2024/06/01/2024.05.31.24308140

[16] F. Eyben, K. R. Scherer, B. W. Schuller, J. Sundberg, E. André,
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